Prediction of local geomagnetic activity on the example of data of “Lviv” Magnetic Observatory

Authors

  • D. I. Vlasov Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine
  • A. S. Parnowski Space Research Institute National Academy of Sciences of Ukraine and State Space Agency of Ukraine

DOI:

https://doi.org/10.15407/knit2021.01.078

Keywords:

local geomagnetic activity, regression modeling, space weather

Abstract

For the first time in world practice, predictive models were constructed for XYZ geomagnetic elements. Based on these models, the prediction was made with 3 hours lead time using data of  the “Lviv” magnetic observatory. The properties of models are as follows: observatory — LVV, рredicted values — XYZlead time — 3 hours; correlation coefficients’ averaged measurement data — 0.824 (X), 0.811 (Y), 0.804 (Z); prediction efficiency — 0.816 (X), 0.803 (Y), 0.801 (Z); skill score — 0.115 (X), 0.095 (Y), 0.099 (Z). The developed models were tested in the Main Center of Special Monitoring, and they were found to meet the Basic Requirements for operational predictive models.

References

Forecast verification methods. URL: http://www.cawcr.gov.au/projects/verification/ (Last accessed: 09.09.2019).

International Real-time Magnetic Observatory Network (INTERMAGNET). URL http://www.intermagnet.org (Last accessed: 09.09.2019).

OMNIWeb online database. URL: https://omniweb.gsfc.nasa.gov/html/ow_data.html (Last accessed: 09.09.2019).

World Data Center for Geomagnetism, Kyoto. URL: http://wdc.kugi.kyoto-u.ac.jp/ (Last accessed: 09.09.2019).

Fisher R. А. (1954). Statistical methods for research workers. London: Oliver and Boyd.

Hudson D. (1964). Statistics lectures on elementary statistics and probability. Geneva.

Billings S. A. (2013). Nonlinear system identification. Wiley.

King J. H., Papitashvili N. E. (2004). Solar Wind Spatial Scales in Comparisons of Hourly Wind and ACE Plasma and Magnetic Field Data. J. Geophys. Res., 110, A02209

https://doi.org/10.1029/2004JA010804.

Machol J. L., Reinard A. A., Viereck R. A., Biesecker D. A. (2013). Identification and replacement of proton-contaminated real-time ACE solar wind measurements. Space Weather, 11, № 7, 434—440.

https://doi.org/10.1002/swe.20070.

Parnowski A. S. (2009). Regression modeling method of space weather prediction. Astrophys. and Space Sci., 323, № 2, 169—180.

https://doi.org/10.1007/s10509-009-0060-4 [arXiv:0906.3271].

Parnowski A. S. (2011). Regression modelling of geomagnetic activity. J. Phys. Studies, 15, № 2, 2002.

https://doi.org/10.30970/jps.15.2002

Parnowski A. S., Polonska A. Yu. (2012). Regression modelling of the interaction between the solar wind and the terrestrial magnetosphere. J. Phys. Studies, 16, № 1/2, 1002.

https://doi.org/10.30970/jps.16.1002

Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1992). Numerical Recipes in FORTRAN. The Art of Scientific Computing. 2nd Ed. Cambridge: Cambridge Univ. Press.

Reay S., Herzog D., Alex S., Kharin E., McLean S., Nosé M., et al. (2011). Magnetic Observatory Data and Metadata: Types and Availability. Geomagnetic Observations and Model, 149—181.

https://doi.org/10.1007/978-90-481-9858-0_7

Semeniv O., Polonska A., Parnowski A. (2014). Operational geomagnetic forecast service. Bull. Taras Shevchenko Nat. Univ. Kyiv. Ser. Astronomy, № 51, 23—24.

Sumaruk T, Sumaruk Yu. (2007). The New Index of Geomagnetic Activity. Publications of the Institute of Geophysics Polish Academy of Sciences. Monographic volume C-99(398), 374—382.

Published

2024-05-13

How to Cite

Vlasov, D. I., & Parnowski, A. S. (2024). Prediction of local geomagnetic activity on the example of data of “Lviv” Magnetic Observatory. Space Science and Technology, 27(1), 78–84. https://doi.org/10.15407/knit2021.01.078

Issue

Section

Space and Atmospheric Physics