Machine learning technique for morphological classification of galaxies from the SDSS. III. The CNN image-based inference of detailed features
DOI:
https://doi.org/10.15407/knit2022.05.027Keywords:
Convolutional Neural Network, data analysis, galaxies, image processing, morphological classificationAbstract
This paper follows a series of our works on the applicability of various machine learning methods to morphological galaxy classification (Vavilova et al., 2021, 2022). We exploited the sample of ∼315800 low-redshift SDSS DR9 galaxies with absolute stellar magnitudes of −24m < Mr< −19.4m at 0.003 < z < 0.1 redshifts as a target data set for the CNN classifier. Because it is tightly overlapped with the Galaxy Zoo 2 (GZ2) sample, we use these annotated data as the training data set to classify galaxies into 34 detailed features. In the presence of a pronounced difference in visual parameters between galaxies from the GZ2 training data set and galaxies without known morphological parameters, we applied novel procedures, which allowed us for the first time to get rid of this difference for smaller and fainter SDSS galaxies with mr< 17.7. We describe in detail the adversarial validation technique as well as how we managed the optimal train-test split of galaxies from the training data set to verify our CNN model based on the DenseNet-201 realistically. We have also found optimal galaxy image transformations, which help increase the classifier’s generalization ability. We demonstrate for the first time that implication of the CNN model with a train-test split of data sets and size-changing function simulating a decrease in magnitude and size (data augmentation) significantly improves the classification of smaller and fainter SDSS galaxies. It can be considered as another way to improve the human bias for those galaxy images that had a poor vote classification in the GZ project. Such an approach, like autoimmunization, when the CNN classifier, trained on very good galaxy images, is able to retrain bad images from the same homogeneous sample, can be considered co-planar to other methods of combating such a human bias. The most promising result is related to the CNN prediction probability in the classification of detailed features. The accuracy of the CNN classifier is in the range of 83.3–99.4 % depending on 32 features (exception is for “disturbed” (68.55 %) and “arms winding medium” (77.39 %) features). As a result, for the first time, we assigned the detailed morphological classification for more than 140000 low-redshift galaxies, especially at the fainter end. A visual inspection of the samples of galaxies with certain morphological features allowed us to reveal typical problem points of galaxy image classification by shape and features from the astronomical point of view. The morphological catalogs of low-redshift SDSS galaxies with the most interesting features are available through the UkrVO website (http://ukr-vo.org/starcats/galaxies/) and VizieR.References
Agnello A., Kelly B. C., Treu T., Marshall P. J. (2015). Data mining for gravitationally lensed quasars, Mon. Not. R. Astron. Soc., 448 (2), 1446-1462.
https://doi.org/10.1093/mnras/stv037
doi:10.1093/mnras/stv037.
https://doi.org/10.1093/mnras/stv037
Ostrovski F., McMahon R. G., Connolly A. J. et al. (2017). VDES J2325-5229 a z = 2.7 gravitationally lensed quasar discovered using morphology-independent supervised machine learning. Mon. Not. R. Astron. Soc., 465 (4), 4325-4334.
https://doi.org/10.1093/mnras/stw2958
doi:10.1093/mnras/stw2958.
https://doi.org/10.1093/mnras/stw2958
Lanusse F., Ma Q., Li N. et al. (2018). CMU DeepLens: deep learning for automatic image based galaxy-galaxy strong lens finding. Mon. Not. R. Astron. Soc., 473 (3), 3895-3906.
https://doi.org/10.1093/mnras/stx1665
doi:10.1093/mnras/stx1665.
https://doi.org/10.1093/mnras/stx1665
Jacobs C., Collett T., Glazebrook K. et al. (2019). Finding highredshift strong lenses in DES using convolutional neural networks. Mon. Not. R. Astron. Soc. 484 (4), 5330-5349.
https://doi.org/10.1093/mnras/stz272
doi:10.1093/mnras/stz272.
https://doi.org/10.1093/mnras/stz272
Khramtsov V., Sergeyev A., Spiniello C. et al. (2019). Kids-squad - ii. machine learning selection of bright extragalactic objects to search for new gravitationally lensed quasars. Astron. Astrophys., A632, A56.
https://doi.org/10.1051/0004-6361/201936006
doi:10.1051/0004-6361/201936006.
https://doi.org/10.1051/0004-6361/201936006
Petrillo C. E., Tortora C., Chatterjee S. et al. (2019). Testing convolutional neural networks for finding strong gravitational lenses in KiDS. Mon. Not. R. Astron. Soc., 482 (1), 807-820.
doi:10.1093/mnras/sty2683.
https://doi.org/10.1093/mnras/sty2683
Ribli D., Pataki B. A., Zorrilla Matilla J. M. et al. (2019). Weak lensing cosmology with convolutional neural networks on noisy data. Mon. Not. R. Astron. Soc., 490 (2), 1843-1860.
https://doi.org/10.1093/mnras/stz2610
doi:10.1093/mnras/stz2610.
https://doi.org/10.1093/mnras/stz2610
Pourrahmani M., Nayyeri H., Cooray A. (2018). LensFlow: A Convolutional Neural Network in Search of Strong Gravitational Lenses. Astrophys. J. , 856 (1), 68.
https://doi.org/10.3847/1538-4357/aaae6a
doi:10.3847/1538-4357/aaae6a.
https://doi.org/10.3847/1538-4357/aaae6a
Pasquet J., Bertin E., Treyer M. et al. (2019). Photometric redshifts from SDSS images using a convolutional neural network. Astron. Astrophys., 621, A26.
https://doi.org/10.1051/0004-6361/201833617
doi:10.1051/0004-6361/201833617.
https://doi.org/10.1051/0004-6361/201833617
Fussell L., Moews B. (2019). Forging new worlds: high-resolution synthetic galaxies with chained generative a dversarial networks. Mon. Not. R. Astron. Soc., 485 (3), 3203-3214.
https://doi.org/10.1093/mnras/stz602
doi:10.1093/mnras/stz602.
https://doi.org/10.1093/mnras/stz602
Salvato M., Ilbert O., Hoyle B. (2019). The many flavours of photometric redshifts. Nature Astronomy, 3, 212-222.
https://doi.org/10.1038/s41550-018-0478-0
doi:10.1038/s41550-018-0478-0.
https://doi.org/10.1038/s41550-018-0478-0
Bonnett C., Troxel M. A., Hartley W. et al. (2016). Redshift distributions of galaxies in the Dark Energy Survey Science Verification shear catalogue and implications for weak lensing, Phys. Rev. D, 94 (4), 042005.
doi:10.1103/PhysRevD.94.042005.
https://doi.org/10.1103/PhysRevD.94.042005
Amaro V., Cavuoti S., Brescia M. et al. (2019). Statistical analysis of probability density functions for photometric redshifts through the KiDS-ESO-DR3 galaxies. Mon. Not. R. Astron. Soc., 482 (3), 3116-3134.
https://doi.org/10.1093/mnras/sty2922
doi:10.1093/mnras/sty2922.
https://doi.org/10.1093/mnras/sty2922
Sadeh I., Abdalla F. B., Lahav O. (2016). ANNz2: Photometric Redshift and Probability Distribution Function Estimation using Machine Learning. Publ. ASP, 128 (968), 104502.
https://doi.org/10.1088/1538-3873/128/968/104502
doi:10.1088/1538-3873/128/968/104502.
https://doi.org/10.1088/1538-3873/128/968/104502
Pasquet-Itam J., Pasquet J. (2018). Deep learning approach for classifying, detecting and predicting photometric redshifts of quasars in the Sloan Digital Sky Survey stripe 82. Astron. Astrophys., 611, A97.
https://doi.org/10.1051/0004-6361/201731106
doi:10.1051/0004-6361/201731106.
https://doi.org/10.1051/0004-6361/201731106
K¨ugler S. D., Gianniotis N. (2016). Modelling multimodal photometric redshift regression with noisy observations. arXiv:1607.06059.
Speagle J. S., Eisenstein D. J. (2017). Deriving photometric redshifts using fuzzy archetypes and self-organizing maps - II. Implementation. Mon. Not. R. Astron. Soc., 469 (1), 1205-1224.
https://doi.org/10.1093/mnras/stx510
doi:10.1093/mnras/stx510.
https://doi.org/10.1093/mnras/stx510
D'Isanto A., Cavuoti S., Gieseke F., Polsterer K. L. (2018). Return of the features. Efficient feature selection and interpretation for photometric redshifts. Astron. Astrophys., 616, A97.
https://doi.org/10.1051/0004-6361/201833103
doi:10.1051/0004-6361/201833103.
https://doi.org/10.1051/0004-6361/201833103
Elyiv A. A., Melnyk O. V., Vavilova I. B. et al. (2020). Machine-learning computation of distance modulus for local Galaxies. Astron. Astrophys., 635 (2020) A124.
https://doi.org/10.1051/0004-6361/201936883
doi:10.1051/0004-6361/201936883.
https://doi.org/10.1051/0004-6361/201936883
Rastegarnia F., Mirtorabi M. T., Moradi R. et al. (2022). Deep learning in searching the spectroscopic redshift of quasars. Mon. Not. R. Astron. Soc., 511 (3), 4490-4499.
https://doi.org/10.1093/mnras/stac076
doi:10.1093/mnras/stac076.
https://doi.org/10.1093/mnras/stac076
Elyiv A. A., Karachentsev I. D., Karachentseva V. E. et al. (2013). Low-density structures in the Local Universe. II. Nearby cosmic voids. Astrophys. Bull., 68 (1), 1-13.
https://doi.org/10.1134/S199034131301001X
doi:10.1134/S199034131301001X.
https://doi.org/10.1134/S199034131301001X
Koulouridis E., Plionis M., Melnyk O., Elyiv A. et al. (2014). X-ray AGN in the XMMLSS galaxy clusters: no evidence of AGN suppression. Astron. Astrophys., 567, A83.
https://doi.org/10.1051/0004-6361/201423601
doi:10.1051/0004-6361/201423601.
https://doi.org/10.1051/0004-6361/201423601
Elyiv A., Marulli F., Pollina G. et al. (2015). Cosmic voids detection without density measurements. Mon. Not. R. Astron. Soc., 448 (1), 642-653.
https://doi.org/10.1093/mnras/stv043
doi:10.1093/mnras/stv043.
https://doi.org/10.1093/mnras/stv043
Schawinski K., Zhang C., Zhang H. et al. (2017). Generative adversarial networks recover features in astrophysical images of galaxies beyond the deconvolution limit. Mon. Not. R. Astron. Soc., 467 (1), L110-L114.
https://doi.org/10.1093/mnrasl/slx008
doi:10.1093/mnrasl/slx008.
https://doi.org/10.1093/mnrasl/slx008
Vavilova I. B., Elyiv A. A., Vasylenko M. Y. (2018). Behind the Zone of Avoidance of the Milky Way: what can we Restore by Direct and Indirect Methods? Russian Radio Physics and Radio Astronomy, 23 (4), 244-257.
https://doi.org/10.15407/rpra23.04.244
doi:10.15407/rpra23.04.244.
https://doi.org/10.15407/rpra23.04.244
Rodr'ıguez A. C., Kacprzak T., Lucchi A. et al. (2018). Fast cosmic web simulations with generative adversarial networks. Comput. Astrophys. Cosmol., 5 (1), 4.
https://doi.org/10.1186/s40668-018-0026-4
doi:10.1186/s40668-018-0026-4.
https://doi.org/10.1186/s40668-018-0026-4
Khramtsov V., Akhmetov V., Fedorov P. (2020). The Northern Extragalactic WISE Ч Pan-STARRS (NEWS) catalogue. Machine-learning identification of 40 million extragalactic objects. Astron. Astrophys., 644, A69.
https://doi.org/10.1051/0004-6361/201834122
doi: 10.1051/0004-6361/201834122.
https://doi.org/10.1051/0004-6361/201834122
Hong S. E., Jeong D., Hwang H. S., Kim J (2021). Revealing the Local Cosmic Web from Galaxies by Deep Learning, Astrophys. J., 913 (1), 76.
https://doi.org/10.3847/1538-4357/abf040
doi:10.3847/1538-4357/abf040.
https://doi.org/10.3847/1538-4357/abf040
Khramtsov V., Spiniello C., Agnello A., Sergeyev A. (2021). VEXAS: VISTA EXtension to Auxiliary Surveys. Data Release 2: Machine-learning based classification of sources in the Southern Hemisphere. Astron. Astrophys., 651, A69.
https://doi.org/10.1051/0004-6361/202040131
doi:10.1051/0004-6361/202040131.
https://doi.org/10.1051/0004-6361/202040131
Diakogiannis F. I., Lewis G. F., Ibata R. A. et al. (2019). Reliable mass calculation in spherical gravitating Systems. Mon. Not. R. Astron. Soc., 482 (3), 3356-3372.
https://doi.org/10.1093/mnras/sty2931
doi:10.1093/mnras/sty2931.
https://doi.org/10.1093/mnras/sty2931
Tsizh M., Novosyadlyj B., Holovatch Y., Libeskind N. I. (2020). Large-scale structures in the ΛCDM Universe: network analysis and machine learning. Mon. Not. R. Astron. Soc., 495 (1), 1311-1320.
https://doi.org/10.1093/mnras/staa1030
doi:10.1093/mnras/staa1030.
https://doi.org/10.1093/mnras/staa1030
Chen Y., Mo H. J., Li C. et al. (2020). Relating the Structure of Dark Matter Halos to Their Assembly and Environment. Astrophys. J., 899 (1), 81.
https://doi.org/10.3847/1538-4357/aba597
doi:10.3847/1538-4357/aba597.
https://doi.org/10.3847/1538-4357/aba597
Moriwaki K., Shirasaki M., Yoshida N. (2021). Deep Learning for Line Intensity Mapping Observations: Information Extraction from Noisy Maps, Astrophys. J. Let., 906 (1), L1.
https://doi.org/10.3847/2041-8213/abd17f
doi:10.3847/2041-8213/abd17f.
https://doi.org/10.3847/2041-8213/abd17f
Flamary R. (2016). Astronomical image reconstruction with convolutional neural networks. arXiv:1612.04526.
https://doi.org/10.23919/EUSIPCO.2017.8081654
Kremer J., Stensbo-Smidt K., Gieseke F. et al. (2017). Big Universe, Big Data: Machine Learning and Image Analysis for Astronomy. arXiv:1704.04650.
https://doi.org/10.1109/MIS.2017.40
Savanevych V. E., Khlamov S. V., Vavilova I. B. et al. (2018). A method of immediate detection of objects with a near-zero apparent motion in series of CCD-frames. Astron. Astrophys., 609, A54.
https://doi.org/10.1051/0004-6361/201630323
doi:10.1051/0004-6361/201630323.
https://doi.org/10.1051/0004-6361/201630323
Villarroel B., Soodla J., Comer'on S. et al. (2020). The Vanishing and Appearing Sources during a Century of Observations Project. I. USNO Objects Missing in Modern Sky Surveys and Follow-up Observations of a "Missing Star", 159 (1), 8.
https://doi.org/10.3847/1538-3881/ab570f
doi:10.3847/1538-3881/ab570f.
https://doi.org/10.3847/1538-3881/ab570f
Pavlenko Y., Kulyk I., Shubina O. et al. (2022). New exocomets of β Pic, 660, A49.
https://doi.org/10.1051/0004-6361/202142111
doi:10.1051/0004-6361/202142111.
https://doi.org/10.1051/0004-6361/202142111
Reiman D. M., G¨ohre B. E. (2019). Deblending galaxy superpositions with branched generative adversarial networks. Mon. Not. R. Astron. Soc.. 485 (2), 2617-2627.
https://doi.org/10.1093/mnras/stz575
doi:10.1093/mnras/stz575.
https://doi.org/10.1093/mnras/stz575
Buchanan J. J., Schneider M. D., Armstrong R. E. et al. (2021). Gaussian Process Classification for Galaxy Blend Identification in LSST. arXiv: 2107.09246.
El Bouchefry K., de Souza R. S. (2020). Learning in Big Data: Introduction to Machine Learning, in: P. ˇSkoda, F. Adam (Eds.), Knowledge Discovery in Big Data from Astronomy and Earth Observation, 2020, pp. 225-249.
https://doi.org/10.1016/B978-0-12-819154-5.00023-0
doi:10.1016/B978-0-12-819154-5.00023-0.
https://doi.org/10.1016/B978-0-12-819154-5.00023-0
Burgazli A., Sergijenko O., Vavilova I. (2022). Machine learning in cosmology and gravitational wave astronomy: recent trends. In: Horizons in Computer Science Research. Ed. T.S. Clary, Vol. 22., Chapter 7, p. 193-240. New York, Nova Science Publisher Inc.
Kang S.-J., Fan J.H., Mao W. et al. (2019). Evaluating the Optical Classification of Fermi BCUs Using Machine Learning. Astrophys. J., 872 (2), 189. arXiv:1902.07717.
https://doi.org/10.3847/1538-4357/ab0383
doi:10.3847/1538-4357/ab0383.
https://doi.org/10.3847/1538-4357/ab0383
Krause M., Pueschel E., Maier G. (2017). Improved γ/hadron separation for the detection of faint γ-ray sources using boosted decision trees. Astroparticle Phys., 89, 1-9. doi:10.1016/j.astropartphys.2017.01.004.
https://doi.org/10.1016/j.astropartphys.2017.01.004
Ruhe T. (2020). Application of machine learning algorithms in imaging Cherenkov and neutrino astronomy, Int. J. Mod. Phys. A, 35 (33), 2043004-778.
https://doi.org/10.1142/S0217751X20430046
doi:10.1142/S0217751X20430046.
https://doi.org/10.1142/S0217751X20430046
Morello G., Morris P. W., Van Dyk S. D. et al. (2018). Applications of machine-learning algorithms for infrared colour selection of Galactic Wolf-Rayet stars. Mon. Not. R. Astron. Soc., 473 (2), 2565-2574.
https://doi.org/10.1093/mnras/stx2474
doi:10.1093/mnras/stx2474.
https://doi.org/10.1093/mnras/stx2474
Ciuca R., Hern'andez O. F. (2017). A Bayesian framework for cosmic string searches in CMB maps, J. Cosm. Astropart. Phys., 2017 (8), 028.
https://doi.org/10.1088/1475-7516/2017/08/028
doi:10.1088/1475-7516/2017/08/028.
https://doi.org/10.1088/1475-7516/2017/08/028
Aniyan A. K., Thorat K. (2017). Classifying Radio Galaxies with the Convolutional Neural Network, Astrophys. J. Supl., 230 (2), 20.
https://doi.org/10.3847/1538-4365/aa7333
doi:10.3847/1538-4365/aa7333.
https://doi.org/10.3847/1538-4365/aa7333
Lukic V., Br¨uggen M., Banfield J. K. et al. (2018). Radio Galaxy Zoo: compact and extended radio source classification with deep learning. Mon. Not. R. Astron. Soc., 476 (1), 246-260.
https://doi.org/10.1093/mnras/sty163
doi:10.1093/mnras/sty163.
https://doi.org/10.1093/mnras/sty163
Ma Z., Xu H., Zhu J. et al. (2019). A Machine Learning Based Morphological Classification of 14,245 Radio AGNs Selected from the Best-Heckman Sample. Astrophys. J. Suppl., 240 (2), 34.
https://doi.org/10.3847/1538-4365/aaf9a2
doi:10.3847/1538-4365/aaf9a2.
https://doi.org/10.3847/1538-4365/aaf9a2
Scaife A. M. M., Porter F. (2021). Fanaroff-Riley classification of radio galaxies using group-equivariant convolutional neural networks. Mon. Not. R. Astron. Soc., 503 (2), 2369-2379.
https://doi.org/10.1093/mnras/stab530
doi:10.1093/mnras/stab530.
https://doi.org/10.1093/mnras/stab530
Ciprijanovi'c A., Kafkes D., Downey K. et al. (2021). DeepMerge - II. Building robust deep learning algorithms for merging galaxy identification across domains. Mon. Not. R. Astron. Soc., 506 (1), 677-691.
https://doi.org/10.1093/mnras/stab1677
doi:10.1093/mnras/stab1677.
https://doi.org/10.1093/mnras/stab1677
Shamir L. (2021). Automatic identification of outliers in Hubble Space Telescope galaxy images. Mon. Not. R. Astron. Soc., 501 (4), 5229-5238.
https://doi.org/10.1093/mnras/staa4036
doi:10.1093/mnras/staa4036.
https://doi.org/10.1093/mnras/staa4036
Vavilova I. B., Dobrycheva D. V., Vasylenko M. Y. et al. (2021). Machine learning technique for morphological classification of galaxies from the SDSS. I. Photometry-based approach. Astron. Astrophys., 648, A122.
https://doi.org/10.1051/0004-6361/202038981
doi:10.1051/0004-6361/202038981.
https://doi.org/10.1051/0004-6361/202038981
Vavilova I. B., Khramtsov V., Dobrycheva D. V. et al. (2022). Machine learning technique for morphological classification of galaxies from SDSS. II. The image-based morphological catalogs of galaxies at 0.02
Walmsley M., Smith L., Lintott C. et al. (2020). Galaxy Zoo: probabilistic morphology through Bayesian CNNs and active learning. Mon. Not. R. Astron. Soc., 491 (2), 1554-1574. doi:10.1093/mnras/stz2816.
https://doi.org/10.1093/mnras/stz2816
Muller A., Guido S. (2016). Introduction to Machine Learning with Python, O'Reilly Media.
Melnyk O. V., Dobrycheva D. V., Vavilova I. B. (2012). Morphology and color indices of galaxies in Pairs: Criteria for the classification of galaxies, Astrophysics, 55 (3), 293-305. doi:10.1007/s10511-012-9236-7.
https://doi.org/10.1007/s10511-012-9236-7
Dobrycheva D. V., Melnyk O. V., Vavilova I. B., Elyiv A. A. (2014). Environmental Properties of Galaxies at z ! 0.1 from the SDSS via the Voronoi Tessellation. Odessa Astron. Publ., 27, 26.
Dobrycheva D. V., Melnyk O. V., Vavilova I. B., Elyiv A. A. (2015). Environmental Density vs. Colour Indices of the Low Redshifts Galaxies. Astrophysics, 58 (2), 168-180. doi:10.1007/s10511-015-9373-x.
https://doi.org/10.1007/s10511-015-9373-x
Dobrycheva D. V., Vavilova I. B., Melnyk O. V., Elyiv A. A. (2017). Machine learning technique for morphological classification of galaxies at z 0.1 from the SDSS. arXiv:1712.08955.
Dobrycheva D. V. (2017). Morphological content and color indices bimodality of a new galaxy sample at the redshifts z
Dobrycheva D. V., Vavilova I. B., Melnyk O. V., Elyiv A. A. (2018). Morphological Type and Color Indices of the SDSS DR9 Galaxies at 0.02 https://doi.org/10.3103/S0884591318060028
doi:10.3103/S0884591318060028.
https://doi.org/10.3103/S0884591318060028
Vasylenko M. Y., Dobrycheva D. V., Vavilova I. B. et al. (2019). Verification of Machine Learning Methods for Binary Morphological Classification of Galaxies from SDSS. Odessa Astron. Publ., 32, 46.
https://doi.org/10.18524/1810-4215.2019.32.182538
doi:10.18524/1810-4215.2019.32.182538.
https://doi.org/10.18524/1810-4215.2019.32.182538
Khramtsov V., Dobrycheva D. V., Vasylenko M. Y., Akhmetov V. S. (2019). Deep learning for morphological classification of galaxies from SDSS, Odessa Astron. Publ., 32, 21.
https://doi.org/10.18524/1810-4215.2019.32.182092
doi:10.18524/1810-4215.2019.32.182092.
https://doi.org/10.18524/1810-4215.2019.32.182092
Vasylenko M., Dobrycheva D., Khramtsov V., Vavilova I. (2020). Deep Convolutional Neural Networks models for the binary morphological classification of SDSS-galaxies. Commun. BAO, 67, 354.
https://doi.org/10.52526/25792776-2020.67.2-354
doi:10.52526/25792776-2020.67.2-354.
https://doi.org/10.52526/25792776-2020.67.2-354
Vavilova I., Dobrycheva D., Vasylenko M. et al. (2020). Multiwavelength Extragalactic Surveys: Examples of Data Mining, In: Knowledge Discovery in Big Data from Astronomy and Earth Observation, Eds. P. Skoda and F. Adam, Elsevier, Ch. 16, pp. 307-323.
https://doi.org/10.1016/B978-0-12-819154-5.00028-X
doi:10.1016/B978-0-12-819154-5.00028-X.
https://doi.org/10.1016/B978-0-12-819154-5.00028-X
Vavilova I., Elyiv A., Dobrycheva D., Melnyk O. (2021). The Voronoi tessellation method in astronomy, In: Intelligent Astrophysics, Eds. I. Zelinka, M. Brescia, D. Baron, Springer, Cham, Vol. 39, Ch. 3, pp. 57-79.
https://doi.org/10.1007/978-3-030-65867-0_3
doi:10.1007/978-3-030-65867-0_3.
https://doi.org/10.1007/978-3-030-65867-0
Vavilova I. B., Dobrycheva D. V., Vasylenko M. Y. et al. (2021). VizieR Online Data Catalog: SDSS galaxies morphological classification (Vavilova+, 2021), VizieR Online Data Catalog (2021) J/A+A/648/A122.
https://doi.org/10.1051/0004-6361/202038981
Vavilova I. B., Khramtsov V., Dobrycheva D. V. et al. VizieR Online Data Catalog: Galaxies at 0.02
Willett K. W., Lintott C. J., Bamford S. P. et al. (2013). Galaxy Zoo 2: detailed morphological classifications for 304 122 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 435 (4), 2835-2860.
https://doi.org/10.1093/mnras/stt1458
doi:10.1093/mnras/stt1458.
https://doi.org/10.1093/mnras/stt1458
Blanton M. R., Dalcanton J., Eisenstein D. et al. (2001). The Luminosity Function of Galaxies in SDSS Commissioning Data. Astron. J., 121 (5), 2358-2380.
https://doi.org/10.1086/320405
doi:10.1086/320405.
https://doi.org/10.1086/320405
Yasuda N., Fukugita M.,. Narayanan V. K. et al. (2001). Galaxy Number Counts from the Sloan Digital Sky Survey Commissioning Data. Astron. J., 122 (3), 1104-1124.
https://doi.org/10.1086/322093
doi:10.1086/322093.
https://doi.org/10.1086/322093
Walmsley M., Lintott C., Geron T. et al. (2021). Galaxy ZOO DECaLSs: Detailed visual morphology measurements from volunteers and deep learning for 314000 galaxies. arXiv:2102.08414.
Lupton R., Blanton M. R., Fekete G. et al. (2004). Preparing Red-Green-Blue Images from CCD Data. Publ. ASP, 116 (816), 133-137.
https://doi.org/10.1086/382245
doi:10.1086/382245.
https://doi.org/10.1086/382245
Wang N., Choi J., Brand D. et al. (2018). Training Deep Neural Networks with 8-bit Floating Point Numbers, arXiv e-prints. arXiv:1812.08011.
Ren W., Yu Y., Zhang J., Huang K. (2014). Learning convolutional nonlinear features for k nearest neighbor image classification, in: 22nd Int. Conf. on Pattern Recognition, 4358-4363.
https://doi.org/10.1109/ICPR.2014.746
Honghui S. (2016). Galaxy Classification with deep convolutional neural networks. Ph.D. thesis, University of Illinois at Urbana-Champaign.
Meyer B. J., Harwood B., Drummond T. (2018). Deep metric learning and image classification with nearest neighbour gaussian kernels, in: 25th IEEE Int. Conf. on Image Processing (ICIP), 151-155.
https://doi.org/10.1109/ICIP.2018.8451297
Pan J., Pham V., Dorairaj M. et al. (2020). Adversarial validation approach to concept drift problem in user targeting automation systems at uber. arXiv:2004.03045.
Bishop C. (1995). Neural networks for pattern recognition, Oxford University Press, USA.
https://doi.org/10.1201/9781420050646.ptb6
Dieleman S., Willett K. W., Dambre J. (2015). Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon. Not. R. Astron. Soc., 450 (2), 1441-1459.
https://doi.org/10.1093/mnras/stv632
doi:10.1093/mnras/stv632.
https://doi.org/10.1093/mnras/stv632
He K., Zhang X., Ren S., Sun J. (2015). Deep residual learning for image recognition. arXiv:1512.03385.
https://doi.org/10.1109/CVPR.2016.90
Vega-Ferrero J., Dominguez Sanchez H., Bernardi M. et al. (2021). Huertas-Company, Pushing automated morphological classifications to their limits with the Dark Energy Survey. Mon. Not. R. Astron. Soc., 506 (2), 1927-1943.
https://doi.org/10.1093/mnras/stab594
doi:10.1093/mnras/stab594.
https://doi.org/10.1093/mnras/stab594
Bhambra P., Joachimi B., Lahav O. (2022). Explaining deep learning of galaxy morphology with saliency mapping, Mon. Not. R. Astron. Soc., 511 (4), 5032-5041.
https://doi.org/10.1093/mnras/stac368
doi:10.1093/mnras/stac368.
https://doi.org/10.1093/mnras/stac368
Gupta R., Srijith P. K., Desai S. (2022)., Galaxy morphology classification using neural ordinary differential equations. Astron. Comp., 38, 100543. doi:10.1016/j.ascom.2021.100543.
https://doi.org/10.1016/j.ascom.2021.100543
Huang G., Liu Z., van der Maaten L., Weinberger K. Q. (2018). Densely connected convolutional networks. arXiv:1608.06993.
https://doi.org/10.1109/CVPR.2017.243
Szegedy C., Vanhoucke V., Ioffe S. et al. (2015). Rethinking the inception architecture for computer vision (2015). arXiv:1512.00567.
https://doi.org/10.1109/CVPR.2016.308
Szegedy C., Ioffe S., Vanhoucke V., Alemi A. (2016). Inception-v4, inception resnet and the impact of residual connections on learning. arXiv:1602.07261.
https://doi.org/10.1609/aaai.v31i1.11231
Zoph B., Vasudevan V., Shlens J. (2017). Learning Transferable Architectures for Scalable Image Recognition. arXiv:1707.07012.
https://doi.org/10.1109/CVPR.2018.00907
Simonyan K., Zisserman A. (2015). Very deep convolutional networks for largescale image recognition. arXiv:1409.1556.
Chollet F. (2017). Xception: Deep learning with depthwise separable convolutions. arXiv:1610.02357.
https://doi.org/10.1109/CVPR.2017.195
Bradley A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognition, 30 (7), 1145-1159.
https://doi.org/10.1016/S0031-3203(96)00142-2
doi:10.1016/S0031-3203(96)00142-2.
https://doi.org/10.1016/S0031-3203(96)00142-2
Rahmani S., Teimoorinia H., Barmby P. (2018). Classifying galaxy spectra at 0.5https://doi.org/10.1093/mnras/sty1291
doi:10.1093/mnras/sty1291.
https://doi.org/10.1093/mnras/sty1291
Curti M., Hayden-Pawson C., Maiolino R. et al. (2022). What drives the scatter of local star-forming galaxies in the BPT diagrams? A Machine Learning based analysis. Mon. Not. R. Astron. Soc., 512 (3), 4136-4163.
https://doi.org/10.1093/mnras/stac544
doi:10.1093/mnras/stac544.
https://doi.org/10.1093/mnras/stac544
Shi F., Liu Y-Y., Sun G.L. et al. A support vector machine for spectral classification of emission-line galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc., 453 (1), 122-127.
https://doi.org/10.1093/mnras/stv1617
doi:10.1093/mnras/stv1617.
https://doi.org/10.1093/mnras/stv1617
Tempel E., Saar E., Liivam¨agi L. J. et al. (2011). Galaxy morphology, luminosity, and environment in the SDSS DR7. Astron. Astrophys., 529 (2011) A53.
https://doi.org/10.1051/0004-6361/201016196
doi:10.1051/0004-6361/201016196.
https://doi.org/10.1051/0004-6361/201016196
Tojeiro R., Masters K. L., Richards J. et al. (2013). The different star formation histories of blue and red spiral and elliptical galaxies. Mon. Not. R. Astron. Soc., 432 (1), 359-373.
https://doi.org/10.1093/mnras/stt484
doi:10.1093/mnras/stt484.
https://doi.org/10.1093/mnras/stt484
Vavilova I. B., Ivashchenko G. Y., Babyk I. V. et al. (2015). The astrocosmic databases for multi-wavelength and cosmological properties of extragalactic sources, Kosm. Nauka Tekhnol., 21 (3), 94-107.
https://doi.org/10.15407/knit2015.05.094
doi:10.15407/knit2015.05.094.
https://doi.org/10.15407/knit2015.05.094
Guo R., Hao C.-N., Xia X. et al. (2020). Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophys. J., 897 (2), 162.
https://doi.org/10.3847/1538-4357/ab9b75
doi:10.3847/1538-4357/ab9b75.
https://doi.org/10.3847/1538-4357/ab9b75
Mezcua M., Lobanov A. P., Mediavilla E., Karouzos M. (2014). Photometric Decomposition of Mergers in Disk Galaxies. Astrophys. J., 784 (1), 16.
https://doi.org/10.1088/0004-637X/784/1/16
doi:10.1088/0004-637X/784/1/16.
https://doi.org/10.1088/0004-637X/784/1/16
Simmons B. D., Lintott C., Willett K. W. et al. (2017). Galaxy Zoo: quantitative visual morphological classifications for 48 000 galaxies from CANDELS. Mon. Not. R. Astron. Soc., 464 (4), 4420-4447.
https://doi.org/10.1093/mnras/stw2587
doi:10.1093/mnras/stw2587.
https://doi.org/10.1093/mnras/stw2587
Bottrell C., Hani M. H., Teimoorinia H. et al. (2019). Deep learning predictions of galaxy merger stage and the importance of observational realism. Mon. Not. R. Astron. Soc., 490 (4), 5390-5413.
https://doi.org/10.1093/mnras/stz2934
doi:10.1093/mnras/stz2934.
https://doi.org/10.1093/mnras/stz2934
Pearson W. J., Wang L., Trayford J. W. Petrillo E., van der Tak F.F.S. (2019). Identifying galaxy mergers in observations and simulations with deep learning. Astron. Astrophys., 626, A49.
https://doi.org/10.1051/0004-6361/201935355
doi:10.1051/0004-6361/201935355.
https://doi.org/10.1051/0004-6361/201935355
Cabrera-Vives G., Miller C. J., Schneider J. Systematic Labeling Bias in Galaxy Morphologies. Astron. J., 156 (6), 284.
https://doi.org/10.3847/1538-3881/aae9f4
doi:10.3847/1538-3881/aae9f4.
https://doi.org/10.3847/1538-3881/aae9f4
Hart R. E., Bamford S. P., Willett K. W. et al. (2016). Galaxy Zoo: comparing the demographics of spiral arm number and a new method for correcting redshift bias. Mon. Not. R. Astron. Soc., 461 (4), 3663-3682.
https://doi.org/10.1093/mnras/stw1588
doi:10.1093/mnras/stw1588.
https://doi.org/10.1093/mnras/stw1588
Tarsitano F., Bruderer C., Schawinski K., Hartley W. G. (2022). Image feature extraction and galaxy classification: a novel and efficient approach with automated machine learning. Mon. Not. R. Astron. Soc., 511 (3), 3330-3338.
https://doi.org/10.1093/mnras/stac233
doi:10.1093/mnras/stac233.
https://doi.org/10.1093/mnras/stac233
Gauthier A., Jain A., Noordeh E. (2016). Galaxy Morphology Classification. e-proceedings, 1-6.
URL http://cs229.stanford.edu/proj2016/report/GauthierJainNoordeh-GalaxyMorp.
Barchi P. H., de Carvalho R. R., Rosa R. R. et al. (2020). Machine and Deep Learning applied to galaxy morphology - A comparative study. Astron. Comp., 30, 100334.
https://doi.org/10.1016/j.ascom.2019.100334
doi:10.1016/j.ascom.2019.100334.
https://doi.org/10.1016/j.ascom.2019.100334
Mittal A., Soorya A., Nagrath P., Hemanth D. J. (2020). Data augmentation based morphological classification of galaxies using deep convolutional neural network. Earth Sci. Inform., 13, 601-617.
https://doi.org/10.1007/s12145-019-00434-8
doi:10.1007/s12145-019-00434-8.
https://doi.org/10.1007/s12145-019-00434-8
Sreejith S., Pereverzyev J., Kelvin L. S. et al. (2018). Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning. Mon. Not. R. Astron. Soc., 474 (4), 5232-5258.
https://doi.org/10.1093/mnras/stx2976
doi:10.1093/mnras/stx2976.
https://doi.org/10.1093/mnras/stx2976
Ghosh A., Urry C. M., Wang Z. et al. (2020). Galaxy Morphology Network: A Convolutional Neural Network Used to Study Morphology and Quenching in ∼100,000 SDSS and ∼20,000 CANDELS Galaxies. Astrophys. J., 895 (2), 112.
https://doi.org/10.3847/1538-4357/ab8a47
doi:10.3847/1538-4357/ab8a47.
https://doi.org/10.3847/1538-4357/ab8a47
Walmsley M., Scaife A. M. M., Lintott C. et al. (2022). Practical galaxy morphology tools from deep supervised representation learning. Mpn. Not. R. Astron. Soc., 513 (2) (2022) 1581-1599.
https://doi.org/10.1093/mnras/stac525
doi:10.1093/mnras/stac525.
https://doi.org/10.1093/mnras/stac525
Gauci A., Zarb Adami K., Abela J. (2010). Machine Learning for Galaxy Morphology Classification. arXiv:1005.0390.
Dom'ınguez S'anchez H., Huertas-Company M., Bernardi M. et al. (2018). Improving galaxy morphologies for SDSS with Deep Learning. Mon. Not. R. Astron. Soc., 476 (3), 3661-3676.
https://doi.org/10.1093/mnras/sty338
doi:10.1093/mnras/sty338.
https://doi.org/10.1093/mnras/sty338
Yao-Yu Lin J., S.-M. Liao, Huang H.-J. et al. (2021). Galaxy Morphological Classification with Efficient Vision Transformer. arXiv:2110.01024.
Karachentseva V. E., Vavilova I. B. (1994). Clustering of low surface brightness dwarf galaxies. I. General properties., Bull. SAO, 37, 98-118.
Karachentseva V. E., Vavilova I. B. (1995). Clustering of dwarf galaxies with low surface brightness. II. The Virgo cluster. Kinemat. Phys. Celest. Bodies, 11 (5), 38-48.
Sabatini S., Roberts S., Davies J. (2003). Dwarf LSB galaxies and their environment: The Virgo Cluster, the Ursa Major Cluster, isolated galaxies and voids. Astrophys. J. Supl. Ser., 285 (1), 97-106.
https://doi.org/10.1007/978-94-010-0107-6_13
doi:10.1023/A:1024609809391.
https://doi.org/10.1023/A:1024609809391
Du W., Cheng C., Wu H. et al. (2019). Low Surface Brightness Galaxy catalogue selected from the α.40-SDSS DR7 Survey and Tully-Fisher relation. Mon. Not. R. Astron. Soc., 483 (2), 1754-1795.
https://doi.org/10.1093/mnras/sty2976
doi:10.1093/mnras/sty2976.
https://doi.org/10.1093/mnras/sty2976
Zhu X.-P., Dai J.-M., Bian C.J. et al. (2019). Galaxy morphology classification with deep convolutional neural networks. Astrophys. Space Sci., 364 (4), 55.
https://doi.org/10.1007/s10509-019-3540-1
doi:10.1007/s10509-019-3540-1.
https://doi.org/10.1007/s10509-019-3540-1
Dhar S., Shamir L. (202). Systematic biases when using deep neural networks for annotating large catalogs of astronomical images. Astron. Comp., 38, 100545.
https://doi.org/10.1016/j.ascom.2022.100545
doi:10.1016/j.ascom.2022.100545.
https://doi.org/10.1016/j.ascom.2022.100545
Smethurst R. J., Masters K. L., Simmons B. D. et al. (2022). Quantifying the poor purity and completeness of morphological samples selected by galaxy colour. Mon. Not. R. Astron. Soc., 510 (3), 4126-4133.
https://doi.org/10.1093/mnras/stab3607
doi:10.1093/mnras/stab3607.
https://doi.org/10.1093/mnras/stab3607
Kautsch S. J., Grebel E. K., Barazza F. D. et al. (2006). A catalog of edge-on disk galaxies. From galaxies with a bulge to superthin galaxies. Astron. Astrophys., 445 (2), 765-778.
https://doi.org/10.1051/0004-6361:20053981
doi:10.1051/0004-6361:20053981.
https://doi.org/10.1051/0004-6361:20053981
Bizyaev D. V., Kautsch S. J., Mosenkov A. V. et al. (2014). The Catalog of Edge-on Disk Galaxies from SDSS. I. The Catalog and the Structural Parameters of Stellar Disks. Astrophys. J., 787 (1), 24.
https://doi.org/10.1088/0004-637X/787/1/24
doi:10.1088/0004-637X/787/1/24.
https://doi.org/10.1088/0004-637X/787/1/24
Lima-Dias C., Monachesi A., Torres-Flores, S. et al. (2021). An environmental dependence of the physical and structural properties in the Hydra cluster galaxies. Mon. Not. R. Astron. Soc., 500 (1), 1323-1339.
https://doi.org/10.1093/mnras/staa3326
doi:10.1093/mnras/staa3326.
https://doi.org/10.1093/mnras/staa3326
Dom'ınguez-S'anchez H., Huertas-Company M., Bernardi M. et al. (2019). Transfer learning for galaxy morphology from one survey to another. Mon. Not. R. Astron. Soc., 484 (1), 93-100.
https://doi.org/10.1093/mnras/sty3497
doi:10.1093/mnras/sty3497.
https://doi.org/10.1093/mnras/sty3497
Lingard T. K., Masters K. L., Krawczyk C. et al. (2020). Galaxy Zoo Builder: Four-component Photometric Decomposition of Spiral Galaxies Guided by Citizen Science. Astrophys. J., 900 (2), 178.
https://doi.org/10.3847/1538-4357/ab9d83
doi:10.3847/1538-4357/ab9d83.
https://doi.org/10.3847/1538-4357/ab9d83
Schawinski K., Urry C. M., Simmons B. D., et al. (2014). The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early- and late-type galaxies. Mon. Not. R. Astron. Soc., 440 (1), 889-907.
https://doi.org/10.1093/mnras/stu327
doi:10.1093/mnras/stu327.
https://doi.org/10.1093/mnras/stu327
Madore B. F., Nelson E., Petrillo K. (2009). VizieR Online Data Catalog: Collisional ring galaxies atlas (Madore+, 2009), VizieR Online Data Catalog (2009) J/ApJS/181/572.
https://doi.org/10.1088/0067-0049/181/2/572
Smirnov D. V., Reshetnikov V. P. (2022). The luminosity function of ringed galaxies. arXiv:2209.06875.
https://doi.org/10.1093/mnras/stac2549
Hoyle B., Masters K. L., Nichol R. C. et al. (2011). Galaxy Zoo: bar lengths in local disc galaxies. Mon. Not. R. Astron. Soc., 415 (4), 3627-3640.
https://doi.org/10.1111/j.1365-2966.2011.18979.x
doi:10.1111/j.1365-2966.2011.18979.x.
https://doi.org/10.1111/j.1365-2966.2011.18979.x
Reza M. (2021). Galaxy morphology classification using automated machine learning. Astron. Comp., 37, 100492. doi:10.1016/j.ascom.2021.100492.
https://doi.org/10.1016/j.ascom.2021.100492
Vavilova I. B., Karachentseva V. E., Makarov D. I., Melnyk O. V. (2005). Triplets of Galaxies in the Local Supercluster. I. Kinematic and Virial Parameters. Kinemat. Fiz. Neb. Tel, 21 (1), 3-20.
Darg D. W., Kaviraj S., Lintott C. J. et al. (2010). Galaxy Zoo: the fraction of merging galaxies in the SDSS and their morphologies. Mon. Not. R. Astron. Soc., 401 (2), 1043-1056.
https://doi.org/10.1111/j.1365-2966.2009.15686.x
doi:10.1111/j.1365-2966.2009.15686.x.
https://doi.org/10.1111/j.1365-2966.2009.15686.x
Weston M. E., McIntosh D. H., Brodwin M. et al. Incidence of WISE -selected obscured AGNs in major mergers and interactions from the SDSS. Mon. Not. R. Astron. Soc., 464 (4), 3882-3906.
https://doi.org/10.1093/mnras/stw2620
doi:10.1093/mnras/stw2620.
https://doi.org/10.1093/mnras/stw2620
Pearson W. J., Suelves L. E., Ho S. C. C. et al. (2022). North Ecliptic Pole merging galaxy catalogue. Astron. Astrophys., 661, A52.
https://doi.org/10.1051/0004-6361/202141013
doi:10.1051/0004-6361/202141013.
https://doi.org/10.1051/0004-6361/202141013
Ahn C. P., Alexandroff R., Allende Prieto C. et al. (2012). The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey. Astrophys. J. Supl., 203 (2), 21.
https://doi.org/10.1088/0067-0049/203/2/21
doi:10.1088/0067-0049/203/2/21.
https://doi.org/10.1088/0067-0049/203/2/21
Blanton M. R., Bershady M. A., Abolfathi B. et al. (2017). SDSS IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astron. J., 154, 28.
https://doi.org/10.3847/1538-3881/aa7567
doi:10.3847/1538-3881/aa7567.
https://doi.org/10.3847/1538-3881/aa7567
Wenger M., Ochsenbein F., Egret D. et al. The SIMBAD astronomical database. The CDS reference database for astronomical objects. Astron. Astrophys. Supl., 143 (2000) 9-22.
https://doi.org/10.1051/aas:2000332
doi:10.1051/aas:2000332.