Space biology projects in Ukraine: nowadays trends

Authors

  • E. L. Kordyum M. G. Kholodny Institute of Botany of the National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15407/knit2023.01.036

Keywords:

animal biology, astrobiology, cellular and molecular biology, gravitational biology, plant biology

Abstract

A brief overview of the results of the implementation of biological projects in the Target Program for scientific space research of the National Academy of Sciences of Ukraine (2018–2022) is presented to current fields of world space biology: astrobiology, cellular and molecular biology, plant biology, animal biology, and gravitational biology.

References

Artemenko O. A. (2021). The study of the functional state of lipid rafts in the cytoplasmic membrane of Pisum sativum seedlings under clinorotation. Space Sci. Technol., 27, № 5, 35-46.

https://doi.org/10.15407/knit2021.05.035

Borisova T. (2018). Nervous system injury in response to contact with environmental, engineered and planetary micro- and nano-sized particles. Front. Physiol., 9, 728.

https://doi.org/10.3389/fphys.2018.00728

Borisova T. (2019). Express assessment of neurotoxicity of particles of planetary and interstellar dust. Microgravity, 5, № 2.

https://doi.org/10.1038/s41526-019-0062-7

Borisova T. A., Krisanova N. V., Pozdnyakova N. G., et al. (2018). Project: Development of a new method for analysis of planetary dust toxicity aiming on perspective space missions. Space Sci. Technol., 24, № 6, 69-73.

https://doi.org/10.15407/knit2018.06.069

Borisova T., Pozdnyakova N., Dudarenko M., et al. (2021). GABAA receptor agonist cinazepam and its active metabolite 3-hydroxyphenazepam act differently at the presynaptic site. Eur. Neuropsychopharmacol., 45, 39-51.

https://doi.org/10.1016/j.euroneuro.2021.03.013

Borysov A., Tarasenko A., Krisanova N. (2020). Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals. Environ. Pollution, 263, Part A, 114502.

https://doi.org/10.1016/j.envpol.2020.114502

Brandt A., De Vera J., Onofri S. (2015). Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS. IJA,, 14, № 3, 411-425.

https://doi.org/10.1017/S1473550414000214

Braun M., Böhmer M., Häder D-P., et al. (2018). Gravitational Biology I: Gravity Sensing and Graviorientation in Microorganisms and Plants (Springer Briefs in Space Life Sciences). 1st ed., 110 p.

https://doi.org/10.1007/978-3-319-93894-3

Cannon A., Salmi M., Bushart T. (2015). Changes during gravity perception and response in a single cell. Methods Mol. Biol., 1309, 199-207

https://doi.org/10.1007/978-1-4939-2697-8_15

Chatterjee A., Wang A., Lera M. (2010). Lunar soil simulant uptake produces a concentration-dependent increase in inducible nitric oxide synthase expression in murine RAW 264.7 macrophage cells. J. Toxicol. Environ. Health, 73, № 9, 623-626.

https://doi.org/10.1080/15287390903578182

Chen H., Dong J., Wang T. (2021). Autophagy in plant abiotic stress management. Int. J. Mol. Sci., 15, 22, 8, 4075.

https://doi.org/10.3390/ijms22084075

Clement J. (2012). Gene expression microarrays in microgravity research: toward the identification of major space genes. Innovations in Biotechnology. Ed. E. C. Agbo, 319-346.

https://doi.org/10.5772/28693

Darbelley N. (1988). Effets de la stimulation gravitropique et de la microgravité sur la prolifération et la différenciation cellulaires dans les racines primaires. Bull. Soc. Bot., 135, 229-250 [in French].

https://doi.org/10.1080/01811797.1988.10824800

de Carvalho S. D., Uetanabaro A. P., Kato R., et al. (2022). The space-exposed kombucha microbial community member Komagataeibacter oboediens showed only minor changes in its genome after reactivation on Earth. Front. Microbiol., 13, 782175.

https://doi.org/10.3389/fmicb.2022.782175

de la Torre R., Sancho L., Horneck G., et al. (2010). Survival of lichens and bacteria exposed to outer space conditions. Results of the Lithopanspermia experiments. Icarus, 208, № 2, 735-748.

https://doi.org/10.1016/j.icarus.2010.03.010

de Vera J. P., Alawi M., Backhaus T., et al. (2019). Limits of life and the habitability of Mars: The ESA Space Experiment BIOMEX on the ISS. Astrobiology, 19, № 2, 145-157.

https://doi.org/10.1089/ast.2018.1897

Digby J., Firn R. (1995). The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. Plant Cell Environ.,18, 1434-1440.

https://doi.org/10.1111/j.1365-3040.1995.tb00205.x

Fabon G., Monforte L., Tomas-Las-Heras R. (2012). Dynamic response of UV-absorbing compounds, quantum yield and the xanthophyll cycle to diel changes in UV-B and photosynthetic radiations in an aquatic liverwort. J. Plant Physiol., 169, 20-26.

https://doi.org/10.1016/j.jplph.2011.08.010

Ferl R., Kohn J., Denison F. (2015). Spaceflight induces specific alterations in the proteomes of Arabidopsis. Astrobiology, 15, 32-56.

https://doi.org/10.1089/ast.2014.1210

Gaier J. (2005). The effects of lunar dust on EVA systems during the Apollo missions. NASA/TM-2005-213610/REV1 [in English].

Góes-Neto A., Kukharenko O., Orlovska I. (2021). Shotgun metagenomic analysis of kombucha mutualistic community exposed to Mars-like environment outside the International Space Station. Environ. Microbiol., 23, № 7, 3727-3742.

https://doi.org/10.1111/1462-2920.15405

Goldermann M., Hanke W. (2001). Ion channel are sensitive to gravity changes. Microgravity Sci. Technol., 13, 35-38.

https://doi.org/10.1007/BF02873330

Halstead T., Dutcher F. (1987). Plants in space, Annu. Rev. Plant Physiol., 38, 317-345.

https://doi.org/10.1146/annurev.pp.38.060187.001533

Hangarter R. P. (1997). Gravity, light and plant form. Plant Cell Environ., 20, № 6, 796-800.

https://doi.org/10.1046/j.1365-3040.1997.d01-124.x

Hanke W., Florian P., Kohn M., et al. (2019). Gravitational Biology II: Interaction of Gravity with Cellular Components and Cell Metabolism (SpringerBriefs in Space Life Sciences) Paperback, 110.

https://doi.org/10.1007/978-3-030-00596-2

Horneck G., Stöffler D., Ott S. et al. (2008). Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. Astrobiology, 8, № 1, 17-44.

https://doi.org/10.1089/ast.2007.0134

Horneck G., David M., Mancinelli R. (2010). Space Microbiology. Microbiol. Mol. Biol. Rev., 74, № 1, 121-156.

https://doi.org/10.1128/MMBR.00016-09

Hoson T. (2014). Plant growth and morphogenesis under different gravity conditions: relevance to plant life in space. Life., 4, № 2, 205-216.

https://doi.org/10.3390/life4020205

Iqbal Z., Javed M., Gull S. (2019). Total phenolic contents of two varieties of Crocus sativus and their antioxidant activity. Int. J. Biosci., 14, № 3, 128-132.

https://doi.org/10.12692/ijb/14.3.128-132

Jaillais Y., Ott T. (2020). The nanoscale organization of the plasma membrane and its importance in signaling: A proteolipid perspective. Plant Physiol., 182, 1682-696.

https://doi.org/10.1104/pp.19.01349

Jiang Y., Yang L., Ferjani A., et al. (2021). Multiple functions of the vacuole in plant growth and fruit quality. Mol. Horticulture, 1, № 4.

https://doi.org/10.1186/s43897-021-00008-7

Kawaguchi Y., Yang Y., Kawashiri N. (2013). The possible interplanetary transfer of microbes: assessing the viability of Deinococcus spp. under the ISS Environmental conditions for performing exposure experiments of microbes in the Tanpopo mission. Orig. Life Evol. Biosph., 43, № 4-5, 411-418.

https://doi.org/10.1007/s11084-013-9346-1

Kern V., Schwuchow J., Reed D., et al. (2005). Gravitropic moss default to spiral growth on the clinostat and in microgravity during spaceflight. Planta, 222, № 1, 149-157.

https://doi.org/10.1007/s00425-004-1467-3

Khorkavtsiv Ya. D., Lobachevs'ka O. V., Kyiak N. Ya. (2021). Involvement of DNA methylation in gravimorphogenesis of the mosses Polytrichum arcticum and Physcomitrella patens. Conference dedicated to the 75th anniversary of the Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine (Kyiv, June 17), 203-205 [in Ukrainian].

Kittang A., Iversen T., Fossum K., et al. (2014). Exploration of plant growth and development using the European Modular Cultivation System facility on the International Space Station. Plant Biol., 16, 528-538.

https://doi.org/10.1111/plb.12132

Klymchuk D., Brown C., Chapman D. (2010). Ultrastructure organization of cells in soybean root tips in microgravity. J. Gravit. Physiol., 6, 97-98 [in English].

Kordyum E. (1994). Effects of altered gravity on plant cell processes: results of recent space and clinostatic experiments. Adv. Space Res., 14, № 8, 1477-1485.

https://doi.org/10.1016/0273-1177(94)90388-3

Kordyum E. (2014). Plant cell gravisensitivity and adaptation to microgravity. Plant Biol., 16, Suppl. 1, 79-90 [in English].

https://doi.org/10.1111/plb.12047

Kordyum E., Hasenstein K. (2021). Plant biology for space exploration - Building on the past, preparing for the future. Life Sci. Space Res., 29, 1-7.

https://doi.org/10.1016/j.lssr.2021.01.003

Kordyum E., Artemenko O., Hasenstein K. (2022). Lipid rafts and plant gravisensitivity. Life., 12, № 11, 1809.

https://doi.org/10.3390/life12111809

Kordyum E., Bulavin I., Vorobyova T. (2018). Clinorotation impacts the plasmalemma lipid bilayer and its functional domains- rafts in plant cells. Front. Physiol. Environ. Aviation Space Physiol., 314-317.

https://doi.org/10.3389/conf.fphys.2018.26.00012

Kordyum E., Chapman D., Brykov V. (2019). Plant cell development and aging may accelerate in microgravity. Acta Astronautica, 157, 157-161 [in English].

https://doi.org/10.1016/j.actaastro.2018.12.036

Kordyum E. L. Klimenko O. M., Bulavin I. V., et al. (2018). Sensitivity of lipid rafts of plant cells to the influence of of modulated microgravity (clinorotation). Space Sci. Technol., 24, № 4, 48-58.

https://doi.org/10.15407/knit2018.04.051

Kordyum E., Martin G., Zaslavsky V., et al. (1999). DNA content and differentiation of root apical cells of Brassica rapa plants grown in microgravity. J. Gravit. Physiol., 6, 119-120 [in English].

Kordyum E. L., Nedukha O. M., Grakhov V. P., et al. (2015). Investigations of the influence of modulated microgravity on the lipid bilayer of the cytiplasmic membrane of plant cells. Space Sci. Technol., 21, № 3, 40-47.

https://doi.org/10.15407/knit2015.03.040

Kozyrovska N., Reva O., Podolich O., et al. (2021). To other planets with upgraded millennial kombucha in rhythms of https://doi.org/10.3389/fspas.2021.701158 sustainability and health support. Front. Astron. Space Sci., 8, 182.

Kraft M. (2013). Plasma membrane organization and function: moving past lipid rafts. Mol. Biol. Cell., 24, 2765-2768.

https://doi.org/10.1091/mbc.e13-03-0165

Krisanova N., Pozdnyakova A. Pastukhov M., еt al. (2019). Vitamin D3 deficiency in puberty rats causes presynaptic malfunctioning through alterations in exocytotic release and uptake of glutamate/GABA and expression of EAAC-1/GAT-3 transporters. Food Chem. Toxicol., 123, 142-150.

https://doi.org/10.1016/j.fct.2018.10.054

Kyiak N. Ya., Lobachevs'ka O. V., Khorkavtsiv Ya. D. (2021). Morpho-physiological reactions of gravisensitivity and adaptation to UV-radiation of the moss Bryum caespiticium Hedw. from Antarctica Space Sci. Technol. 27, № 5, 47-59.

https://doi.org/10.15407/knit2021.05.047

Lam C. W., Scully R. R., Zhang Y., et al. (2013).Toxicity of lunar dust assessed in inhalation-exposed rats. Inhal. Toxicol., 12, 661-678.

https://doi.org/10.3109/08958378.2013.833660

Latch J., Hamilton R., Holian A., et al. (2008). Toxicity of lunar and Martian dust simulants to alveolar macrophages isolated from human volunteers. Inhal. Toxicol., 20, 157-165.

https://doi.org/10.1080/08958370701821219

Lee I., Podolich O., Bertram B. (2022). Metagenome-assembled genomes of Komagataeibacter from kombucha exposed to Mars-like conditions reveal the secrets in tolerating extraterrestrial stresses. J. Microbiol. Biotechnol., 32, № 8, 967-975.

https://doi.org/10.4014/jmb.2204.04009

Lingwood D., Simons K. (2010). Lipid rafts as a membrane-organizing principle. Science, 327, 46-50.

https://doi.org/10.1126/science.1174621

Lobachevska O., Khorkavtsiv Ya., Kyyak N., et al. (2018). Adaptive role of gravidependent morphological variability in mosses. 34th Annual Meeting of the ASGSR. Abstracts. MD USA, Bethesda (October-November, 2018), 148-152 [in English].

Lobachevs'ka O. V., Kyiak N. Ya., Khorkavtsiv Ya. D. (2019). Morpho-functional peculiarities of the moss Weissia tortilis Spreng. protonemata cells with different gravisensitivity. Space Sci. Technol., 25, № 2, 60-70.

https://doi.org/10.15407/knit2019.02.060

Lobachevska O., Kyyak N., Kordyum E., et al. (2021). The role of gravimorphoses in moss adaptation to extreme environment. Ukr. Bot. J., 78, № 1, 69-79.

https://doi.org/10.15407/ukrbotj78.01.069

Lobachevska O., Kyyak N., Kordyum E., et al. (2022). Gravi-sensitivity of mosses and their gravity-dependent ontogenetic adaptations. Life, 12, № 11, 1782.

https://doi.org/10.3390/life12111782

Lytvyn D., Olenieva V., Yemets A., et al. (2018). Histochemical analysis of tissue-specific acetylation of α-tubulin as a response for autophagy development in Arabidopsis thaliana induced by different stress factors. Cytol. Genet., 52, № 4, 245-252.

https://doi.org/10.3103/S0095452718040059

Medina F-J., Herranz R. (2010). Microgravity environment uncouples cell growth and cell proliferation in root meristematic cells: the mediator role of auxin. Plant Signal. Behav., 5, 176-178.

https://doi.org/10.4161/psb.5.2.10966

Medina F-J. (2020). Space explorers need to be space farmers: What we know and what we need to know about plant growth in space. Mètode Science Studies J. Annu. Rev., 11, 55-62.

https://doi.org/10.7203/metode.11.14606

Merkys A., Laurinavichius R. (1990). Plant growth in space. Fundamentals of Space Biology. Eds M. Asashima, G. M. Malacinski. Berlin: Springer-Verlag, 64-89 [in English].

Millar C., Johnson R., Edelmann J., et al. (2011). An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Astrobiology, 11, 787-797.

https://doi.org/10.1089/ast.2011.0699

Newsham K., Robinson, S. (2009). Responses of plants in Polar Regions to UV-B exposure: a meta-analysis. Global Change Biol., 15, № 11, 2574-2589.

https://doi.org/10.1111/j.1365-2486.2009.01944.x

Obolenskaya M., Dotsenko V., Martsenyuk O., et al. (2021). A new insight into mechanisms of interferon alpha neurotoxicity: Expression of GRIN3A subunit of NMDA receptors and NMDA-evoked exocytosis. Progress Neuro-Psychopharmacol. Biol. Psychiatry, 110, 110317.

https://doi.org/10.1016/j.pnpbp.2021.110317

Oleneva V., Lytvyn D., Yemets A., et al. (2017). Tubulin acetylation accompanies atophagy development induced by different abiotic stimuli in Arabidopsis thaliana. Cell. Biol. Int., 43, № 9, 1056-1064.

https://doi.org/10.1002/cbin.10843

Oleneva V., Lytvyn D., Yemets A., et al. (2018). Expression of kinesins, involved in the development of autophagy in Arabidopsis thaliana, and the role of tubulin acetylation in the interaction of ATG8 protein with microtubules. Factors Exp. Evol. Organisms, 22, 162-168.

https://doi.org/10.7124/FEEO.v22.942

Orlovska I., Podolich O., Kukharenko O., et al. (2021). Bacterial cellulose retains robustness but its synthesis declines after exposure to a Mars-like environment simulated utside the International Space Station. Astrobiology, 21, № 6, 706-717.

https://doi.org/10.1089/ast.2020.2332

Orlovska I., Podolich O., Kukharenko Oet al. (2022).The conceptual approach to the use of postbiotics based on bacterial membrane nanovesicles for prophylaxis of astronauts health disorders. Space Sci. Technol., 28, № 6.

https://doi.org/10.15407/knit2022.06.034

Ott E., Kawaguchi Y., Kölbl D., et al. (2020). Molecular repertoire of Deinococcus radiodurans after 1 year of exposure outside the International Space Station within the Tanpopo mission. Microbiome, 8, 150.

https://doi.org/10.1186/s40168-020-00927-5

Paliienko K., Pastukhov A., Babič M., et al. (2020). Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals. Beilstein J. Nanotechnol., 11, 1381-1393.

https://doi.org/10.3762/bjnano.11.122

Panitz C., Frösler J., Wingender J., et al. (2019). Tolerances of Deinococcus geothermalis biofilms and planktonic cells exposed to space and simulated martian conditions in low earth orbit for almost two years. Astrobiology, 19, № 8, 979-994.

https://doi.org/10.1089/ast.2018.1913

Pastukhov A., Borisova T. (2018a). Combined application of glutamate transporter inhibitors and hypothermia discriminates principal constituent processes involved in glutamate homo- and heteroexchange in brain nerve terminals. Ther. Hypothermia Tem. Manag., 8, № 3, 143-149.

https://doi.org/10.1089/ther.2017.0047

Pastukhov A., Borisova T. (2018b). Levetiracetam-mediated improvement of decreased NMDA-induced glutamate release from nerve terminals during hypothermia. Brain Res., 1699, 69-78.

https://doi.org/10.1016/j.brainres.2018.06.032

Pastukhov A. O., Krisanova N. V., Pozdnyakova N. G., et al. (2022). Development of neuroprotection approaches for longterm space missions. Space Sci. Technol., 28, № 6, 52-62.

https://doi.org/10.15407/knit2022.06.052

Paul A., Amalfitano C., Ferl. R. (2012). Plant growth strategies are remodeled by spaceflight. BMC Plant Biology, 12, 232-255.

https://doi.org/10.1186/1471-2229-12-232

Paul A., Elardo S., Ferl R. (2022). Plants grown in Apollo lunar regolith present stress-associated transcriptomes that inform prospects for lunar exploration. Communications Biol., 5, 1-9,

https://doi.org/10.1038/s42003-022-03334-8

Podolich O., Kukharenko O., Haidak A., et al. (2019). Multimicrobial kombucha culture tolerates Mars-like conditions simulated on low-earth orbit. Astrobiology, 19, № 2, 183-196.

https://doi.org/10.1089/ast.2017.1746

Podolich O., Kukharenko O., Zaets I., et al. (2020). Fitness of outer membrane vesicles from Komagataeibacter intermedius is altered under the impact of simulated Mars-like stressors outside the International Space Station. Front Microbiol., 26, № 11, 1268.

https://doi.org/10.3389/fmicb.2020.01268

Polulyakh Yu., Zhadko S., Klimchuk D. (1989). Plant cell plasma membrane structure and properties under clinostating . Adv. Space Res., 9, 71-74 [in English].

https://doi.org/10.1016/0273-1177(89)90057-4

Poulet L., Zeidler C., Bunchek J., et al. (2021). Crew time in a space greenhouse using data from analog missions and Veggie Life Sci. Space Res, 31, 101-112.

https://doi.org/10.1016/j.lssr.2021.08.002

Pozdniakova N. H., Pastukhov A. O., Dudarenko M. V., et al. (2018). Enrichment of the inorganic analogue of martian dust with the novel carbon nanoparticles obtained during combustion of carbohydrates and assesment of its meurotoxicity. Space Sci. Technol., 24, № 2, 60-71.

https://doi.org/10.15407/knit2018.02.060

Pozdnyakova N., Dudarenko M., Borisova T. (2019). Age-dependency of levetiracetam effects on exocytotic GABA release from nerve terminals in the hippocampus and cortex in norm and after perinatal hypoxia. Cell. Mol. Neurobiology, 39, 701-714.

https://doi.org/10.1007/s10571-019-00676-6

Prasad B., Richter R., Vadakedath N., et al. (2020). Exploration of space to achieve scientific breakthroughs. Biotechnol. Adv., 43, 107572 https://doi.org/10.1016/j.biotechadv.2020.107572

Rawat N., Singla-Pareek S., Pareek A. (2021). Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol. Plant., 171, 653-676.

https://doi.org/10.1111/ppl.13217

Reva O. N., Zaets I. E., Ovcharenko L. P., et al. (2015). Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express, 5, № 1, 35.

https://doi.org/10.1186/s13568-015-0124-5

Roychoudhry S., Bianco M., Kieffer M., et al. (2013). Auxin control gravitropic setpont angle in higher plant lateral branches. Curr. Biol., 23, 1497-1504. [in English]

https://doi.org/10.1016/j.cub.2013.06.034

Sack F. (1991). Plant gravity sensing. Int. Rev. Cytol., 127, 193-252.

https://doi.org/10.1016/S0074-7696(08)60695-6

Sack F. (1993). Gravitropism in protonemata of the moss Ceratodon. Bull. Torrey Bot. Club, 25, 36 - 44 [in English].

Sancho L.G, de la Torre R., Horneck G., et al. (2007). Lichens survive in space: results from the 2005 LICHENS experiment. Astrobiology, 7, № 3, 443-454.

https://doi.org/10.1089/ast.2006.0046

Schwuchow J., Kim D., Sack F. (1995). Caulonemal gravitropism and amyloplast sedimentation in the moss Funaria. Can. J. Bot., 73, 1029-1035.

https://doi.org/10.1139/b95-112

Schwuchow J., Kern V., White N., et al. (2002). Conservation of the plastid sedimentation zone in all moss genera with known gravitropic protonemata. J. Plant Growth Regul., 21, 146-155.

https://doi.org/10.1007/s003440010048

Shadrina R. Y., Horyunova I. I., Blume Ya. B., Yemets A. I. (2020). Autophagosome formation and transcriptional activity of ATG8 genes in Arabidopsis root cells during the development of autophagy under microgravity conditions. Reports NAS of Ukraine, 9, 77-85.

https://doi.org/10.15407/dopovidi2020.09.077

Shadrina R.Y., Yemets A.I., Blume Ya.B. (2019). Development of autophagy as an adaptive response of Arabidopsis thaliana plants to microgravity conditions. Factors Exp. Evolution Organisms, 25, 327-332.

https://doi.org/10.7124/FEEO.v25.1186

Sieber M., Hanke W., Kohn F. (2014). Modification of membrane fluidity by gravity. Open J. Biophysics, 4, 105-111. https://doi.org/10.4236/ojbiphy.2014.44012 https://doi.org/10.1139/b95-112 [in English].

Sieber M., Kaltenbach S., Hanke W., et al. (2016). Conductance and capacity of plain lipid membranes under conditions of variable gravity. J. Biomed. Sci. Engineering, 9, № 8, 361-366.

https://doi.org/10.4236/jbise.2016.98031

Slenska K., Kordyum E. (1995). Gravity, cellular membranes and associated processes: an introduction. Adv. Space Res., 17, № 6/7, 141-142.

https://doi.org/10.1016/0273-1177(95)00626-P

Sroka Z. (2005). Antioxidative and antiradical properties of plant phenolics. J. Biosci., 60, 833-843.

https://doi.org/10.1515/znc-2005-11-1204

Wheeler R. (2010). Plants for human life support in space: From Myers to Mars. Gravit. Space Res., 23, 25-35 [in English].

Wheeler R. (2017). Agriculture for space: people and places paving the way. Open Agriculture, 14-32.

https://doi.org/10.1515/opag-2017-0002

Wink M. (1993). The plant vacuole: a multifunctional compartment. J. Exp. Bot., 44, 231-246 [in English].

Wolverton C., Kiss J. (2009). An update on plant space biology. Gravit. Space Biol., 22, 13-20 [in English].

Yamagishi A., Kawaguchi Y., Hashimoto H. (2018). Environmental data and survival data of Deinococcus aetherius from the Exposure Facility of the Japan Experimental Module of the International Space Station obtained by the Tanpopo mission. Astrobiology, 18, 1369-1374. Bibcode:2018AsBio..18.1369Y.

https://doi.org/10.1089/ast.2017.1751

Yemets A., Shadrina R., Horyunova I., et al. (2020). Development of autophagy in plant under cells under microgravity: The role of microtubules and ATG8 proteins in autophagosome formation. Space Research in Ukraine. Kyiv: Academperiodica, 79-84 [in English].

Yu M., Cui Y. N., Zhang X., et al. (2020). Organization and dynamics of functional plant membrane microdomains. Cell. Mol. Life Sci., 77, 275-287.

https://doi.org/10.1007/s00018-019-03270-7

Zabel P., Bamseya M., Schubert D., Tajmar M. (2016). Review and analysis of over 40 years of space plant growth systems. Life Sci. Space Res., 10, 1-16.

https://doi.org/10.1016/j.lssr.2016.06.004

Zhao J., Dixon R. (2013). AMATE transporters facilitate vacuolar uptake of epicatechin 3′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell, 21, 2323-2340.

Published

2024-04-20

How to Cite

Kordyum, E. L. (2024). Space biology projects in Ukraine: nowadays trends. Space Science and Technology, 29(1), 36–51. https://doi.org/10.15407/knit2023.01.036