Operational Control as a Means of the Evaluation of Quality of Welded Connections for Flash-Butt Welding of Modern High-Strength Steels
DOI:
https://doi.org/10.15407/scine16.02.066Keywords:
flash-butt welding, fuzzy logic, heat-affected zone, high-strength rails, regression model, Sugeno classifierAbstract
Introduction. Flash-butt welding (FBW) of rails is controlled in real time based on the tolerances of the main process parameters according to the data of specifications. The operational control algorithm enables real-time detection of low quality weld and inadmissible trends in the process.
Problem Statement. In addition to the existing method, in order to control the compliance of welding of new high-strength steel rails with the specifications, it is necessary to take into account the width of the heat-affected zone (HAZ). The known numerical methods for calculating the HAZ in real time cannot be implemented because of insufficient computational capabilities of modern control systems.
Purpose. To develop an algorithm for real-time monitoring of FBW with predicting the width of the HAZ, in compliance with technical specifications.
Materials and Methods. A numerical method for calculating thermal fields during flash-butt welding, a regression analysis for HAZ prediction. The HAZ width is calculated based on the process parameters at the burning-off stage and on the upsetting.
Results. A real-time algorithm has been developed for controlling FBW of modern high-strength steels with prediction of the HAZ width. The algorithm is based on mathematical modeling of joints formation during flash-butt welding.
Conclusions. The regression equation in the form of a second-order polynomial or MLP neural network with a structure of 3 neurons in the input layer — 2 neurons in the hidden layer — 1 neuron in the output layer can be used for calculating the HAZ width in real time with the required accuracy for practical use. Prediction of the HAZ width during operational control expands the possibilities of its use for resistance butt-welding of high-strength rails. The developed algorithm has increased the accuracy and reliability of operational control of FBW in real time.
References
Kuchuk-Yatsenko, S. I., Rudenko, P. M., Havrysh, V. S., Didkovsky, O. V., Antipin, Y. V., Horonkov, M. D. (2015). Creation of control system of flash-butt welding of rails in stationary and field conditions, which provides an increase of operational life and reliability of railway tracks. Targeted comprehensive program of NAS of Ukraine "Problems of the resource and safety of operation of structures, structures and machines". Collection of scientific articles based on the results obtained in 2013–2015. Kyiv [in Ukrainian].
Kuchuk-Yatsenko, S. I., Rudenko, P. M., Gavrish, V. S., Didkovsky, O. V., Shvets, V. S., Antipin, E. V., Wojtas, P., Kozlowski, A. (2017). Real-time operational control in information management system for flash-butt welding of rails. Mining informatics automation and electrical engineering, 1(529), 35–42.
https://doi.org/10.7494/miag.2017.1.529.35
Shtovba, S. D. Fuzzy Logic Toolbox. Introduction to fuzzy set theory and fuzzy logic.
URL: http://matlab.exponenta.ru/fuzzylogic/book1/ (Last accessed: 03.01.2019) [in Russian].
DIN EN 14587-2. Railway applications - Track - Flash butt welding of rails - Part 2: New R220, R260, R260Mn and R350HT grade rails by mobile welding machines at sites other than a fixed plant.
URL://https://www.en-standard.eu/din-en-14587-2-railway-applications-track-fla.
(Last accessed: 27.12.2019)
Electronic textbook STATISTICS StatSoft.
URL: http://statsoft.ru/home/textbook/ (Last accessed: 03/01/2019) [in Rusian].
Kuchuk-Yaczenko, S. I., Milenin, A. S., Velikoivanenko, E. A., Antipin, Y. V., Didkovsky, O. V. (2018). Mathematical modeling of the metal heating process in flash butt welding by continuous flash. Automatic welding, 10, 3–10 [in Russian].
https://doi.org/10.15407/as2018.10.01
Shtovba, S. Classification of objects based on fuzzy inference.
URL: https://www.researchgate.net/publication/280064772
(Last accessed: 01.03.2019) [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Copyright Notice Authors published in the journal “Science and Innovation” agree to the following conditions: Authors retain copyright and grant the journal the right of first publication. Authors may enter into separate, additional contractual agreements for non-exclusive distribution of the version of their work (article) published in the journal “Science and Innovation” (for example, place it in an institutional repository or publish in their book), while confirming its initial publication in the journal “Science and innovation.” Authors are allowed to place their work on the Internet (for example, in institutional repositories or on their website).
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.