Design and Manufacture of Scintillator-PMT Type Detectors Based on ZnSe(Al) and UPS-923A Plastic Scintillator for α-, β- and Mixed α-β-Radiation Devices

Authors

DOI:

https://doi.org/10.15407/scine19.05.057

Keywords:

alpha-beta radiation, detector, scintillator, zinc selenide, polystyrene, and polymethyl methacrylate

Abstract

Introduction. The search for technical solutions for the creation of effective α- and β- radiation detectors is a global trend in the field of radiation monitoring.
Problem Statement. The characteristics of α- and β-particle detectors can be improved by using materials with optimized parameters, original designs and technology.
Purpose. The purpose of this research is to develop and create a technology framework for manufacturing scintillation detectors based on activated zinc selenide ZnSe(Al) and plastic scintillator (PS) of UPS-923A type polystyrene for registration of α-, β- and α-β-radiations.
Material and Methods. ZnSe(Al) crystal, PS based on UPS-923A polystyrene, polymethyl methacrylate (PMMA) have been used; the hot pressing method; the detector parameters under irradiation with α- and β-particles have been tested with the use of the spectrometry and spectrophotometry methods.
Results. The following process techniques have been elaborated: for manufacturing the α-detector based on a thin layer of ZnSe(Al) fine-crystalline scintillator applied to a PMMA plate, which operates in the counting mode of registration (sensitivity > 0.15 pulse per sec/Bq (pps/Bq) (239Pu)); for manufacturing the PS plates of UPS923A polystyrene with a given thickness and area by the hot pressing method and the β-detectors based on them, which operate in the counting mode of registration (sensitivity > 0.28 imp · s–1/Bq (90Sr-90Y)); for manufacturing the α-β-detector based on a thin layer of fine-crystalline ZnSe(Al) applied to PS plate of UPS-923A polystyrene, which operate in the counting mode of registration (sensitivity > 0.15 pps/Bq (239Pu) and > 0.28 pps/Bq (90Sr-90Y)); for manufacturing the α-β-detector with the use of a thin monocrystalline plate of ZnSe(Al) scintillator optically connected to a PMMA plate, which operates in the spectrometric mode of registration (the detector simultaneously registers α- and β-particles with spectrum separation, α/β ratio > 0.85, sensitivity > 0.3 pps/Bq (239Pu), and > 0.28 pps/Bq (90Sr-90Y)).
Conclusions. The developed detectors are as good as the world analogs and provide signal registration in both counting and spectrometric modes.

References

ZnS(Ag) Zinc Sulfide Scintillation Material. © 2002 Saint-Gobain Ceramics and Plastics, Inc. URL: http://www.hep. ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf (Last accessed: 01.11.2022).

Patent of USA № US7679064B2. Particle detector and neutron detector that use zinc sulfide phosphors. Katagiri M. URL: https://patents.google.com/patent/US7679064 (Last accessed: 01.11.2022).

Lee, S. K., Kang, S. Ya., Jang, D. Yu., Lee, Ch. H., Kang, S. M., …, Kim, Y. K. (2011). Comparison of new simple methods in fabricating ZnS(Ag) scintillators for detecting alpha particles. Progress in Nuclear Science and Technology, 1, 194—197. https://doi.org/10.15669/pnst.1.194.

Morozova, N. K., Kuznetsov, V. A. (1987). Zinc sulfide: preparation and optical properties (Eds. M. V. Fok). Moscow [in Russian].

Foster, J. (2006). A comparison of the ZnS(Ag) scintillation detector to the silicon semiconductor detector for quantification of alpha radioactivity in aqueous solutions. All Theses. Clemson University: TigerPrints. URL: https://tigerprints.clemson.edu/all_theses/10 (Last accessed: 01.11.2022).

Nikl, M. (2006). Scintillation detectors for X-rays. Meas. Sci. Technol., 17(4), 37—54. https://doi.org/10.1088/0957-0233/ 17/4/R01.

Ryzhikov, V., Starzhinskiy, N., Galchinetskii, L., Gashin, P., Kozin, D., Danshin, E. (2001). New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon. IEEE T. Nucl. Sci., 48(3), 356—359. https://doi.org/ 10.1109/23.940080.

Ryzhikov, V., Starzhinskiy, N. (2005). Properties and peculiar features of application of isoelectronically doped A2 B6 compound-based scintillators. Journal of Radiation Protection and Research, 30(2), 77—84. URL: https://www.jrpr.org/ upload/pdf/BSBOB5_2005_v30n2_77.pdf (Last accessed: 01.11.2022).

Lee, W. G., Kim, Y. K., Kim, J. K., Seo, H. J., Ryzhikov, V., Starzhinskiy, N., …, Zelenskaya, O. (2006). Particularities of ZnSe-based scintillators for a spectrometry of charged particles and gamma quanta. Journal of the Korean Physical Society, 48(1), 47—50. URL: https://www.jkps.or.kr/journal/view.html?uid=7413&vmd=Full (Last accessed: 01.11.2022).

Ryzhikov, V. D., Galchinetskii, L. P., Starzhinskiy, N. G., Danshin, E. A., Katrunov, K. A., Chernikov, V. V. (2001). Combined detectors of charged particles based on zinc selenide scintillators and silicon photodiodes. Problems of Atomic Science and Technology. Nuclear Physics Investigations, 5, 174—176. URL: https://vant.kipt.kharkov.ua/ARTICLE/VANT_ 2001_5/article_2001_5_174.pdf (Last accessed: 01.11.2022).

Ryzhikov, V., Grinyov, B., Galkin, S., Starzhinskiy, N., Rybalka, I. (2013). Growing technology and luminescent characteristics of ZnSe doped crystals. J. Cryst. Growth, 364, 111—117. https://doi.org/10.1016/j.jcrysgro.2012.11.034.

Galkin, S. M., Rybalka, I. A., Tupitsyna, I. A., Zvereva, V. S., Litichevskiy, V. A. (2016). The development of flexible scintillation panels based on chalcogenide and oxide phosphors for advanced X-ray scanners and tomographs. Sci. Innov., 12(6), 37—45. https://doi.org/10.15407/scine12.06.037.

van Eijk, Carel W. E. (2002). Neutron PSDs for the next generation of spallation neutron sources. Nuclear Instruments and Methods in Physics Research A, 477, 383—390. https://doi.org/10.1016/S0168-9002(01)01836-8.

Beeman, J. W., Bellini, F., Cardani, L., Casali, N., Dafinei, I., Di Domizio, S., ..., Vignati, M. (2013). Performances of a large mass ZnSe bolometer to search for rare events. Journal of Instrumentation, 8, P05021. https://doi.org/10.1088/1748- 0221/8/05/P05021.

Nagorny, S., Cardani, L., Casali, N., Dafinei, I., Pagnanini, L., Pattavina, L., …, Schaeffner, K. (2017). Quenching factor for alpha particles in ZnSe scintillating bolometers. IOP Conf. Series: Materials Science and Engineering, 169, 012011. https:// doi.org/10.1088/1757-899X/169/1/012011.

Arnaboldi, C., Capelli, S., Cremonesi, O., Gironi, L., Pavan, M., Pessina, G., Pirro, S. (2011). Characterization of ZnSe scintillating bolometers for Double Beta Decay. Astroparticle Physics, 34(6), 344—353. https://doi.org/10.1016/j.astropartphys.2010.09.004.

Maekawa, T., Sumita, A., Makino, Sh. (1998). Thin beta-ray detectors using plastic scintillator combined with wavelength-shifting fibers for surface contamination monitoring. Journal of Nuclear Science and Technology, 35(12), 886—894. https://doi.org/10.1080/18811248.1998.9733961.

Miramonti, L. (2002). A plastic scintillator detector for beta particles. Radiation Measurements, 35(4), 347—354. https://doi.org/10.1016/S1350-4487(02)00051-3.

Pourtangestani, K., Machrafi, R. (2012). Optimization of plastic scintillator thicknesses for online beta/gamma detection. EPJ Web of Conferences, 24, 07010. https://doi.org/10.1051/epjconf/20122407010.

Bae, J. W., Kim, H. R. (2020). Plastic scintillator beta ray scanner for in-situ discrimination of beta ray and gamma ray radioactivity in soil. Nuclear Engineering and Technology, 52(6), 1259—1265. https://doi.org/10.1016/j.net.2019.11.013.

Grinyov, B. V., Senchishin, V. G. (2003). Plastic scintillators. Kharkov [in Russian].

Patent of Ukraine № UA103711C2. Voronkin, Ye. F., Galkin, S. M., Lalaiants, O. I., Litichevskyi, V. O., Tarasov, V. O. Method for production of a scintillation element for registration of alpha-radiation [in Ukrainian]. URL: https://patents. google.com/patent/UA125108C2/en (Last accessed: 01.11.2022).

Alpha Detection EJ-440, EJ-442. © 2021 Eljen Technology. URL: https://eljentechnology.com/products/zinc-sulfidecoated/ej-440-ej-442 (Last accessed: 01.11.2022).

Alpha Detector Model 43-1. © 2022 Ludlum Measurements, Inc. URL: https://ludlums.com/products/health-physics/ product/model-43-1 (Last accessed: 01.11.2022).

Patent of USA № US7375336B2. Hasegawa, I., Izaki, K., Kobayashi, H., Ino, K., Kanazawa, N. ZnS(Ag) scintillation detector. URL: https://patents.google.com/patent/US7375336B2/en (Last accessed: 01.11.2022).

Patent of Ukraine № UA125108C2. Boiaryntsev, A. Yu., Nepokupna, T. A., Galkin, S. M., Sibilieva, T. H. Scintillation coating for alpha detector [in Ukrainian]. URL: https://patents.google.com/patent/UA125108C2/en (Last accessed: 01.11.2022).

AT1329 sample counter. © 2023 ATOMTEX. URL: https://atomtex.com/en/at1329-sample-counter (Last accessed: 14.04.2023).

Kumar, A., Waker, A. J. (2012). An experimental study of the relative response of plastic scintillators to photons and beta particles. Radiation Measurements, 47(10), 930—935. https://doi.org/10.1016/j.radmeas.2012.08.003.

Reeder, P. L., Peurrung, A. J., Hansen, R. R., Stromswold, D. C., Hensley, W. K., Hubbard, C. W. (1999). Detection of fast neutrons in a plastic scintillator using digital pulse processing to reject gammas. Nuclear Instruments and Methods in Physics Research A, 422, 84—88. https://doi.org/10.1016/S0168-9002(98)01068-7.

Alpha/Beta Detection EJ-444. © 2021 Eljen Technology. URL: https://eljentechnology.com/products/zinc-sulfidecoated/ej-444 (Last accessed: 01.11.2022).

Alpha-Beta Detector Model 43-1-1. © 2022 Ludlum Measurements, Inc. URL: https://ludlums.com/products/all-products/product/model-43-1-1 (Last accessed: 01.11.2022).

Alpha and beta radiation detector BDPS-96. © 1995-2022 «SPE «TETRA» Ltd. Devices of radiation and technological control. URL: http://tetra.ua/en/production/blocks_and_devices/96/bdps-96.pdf (Last accessed: 01.11.2022).

Ryzhikov, V., Galchinetski, L., Galkin, S., Danshin, E., …, Chernikov, V. (2000). Combined detectors based on ZnSe(Te), CsI(Tl) and Si-PIN-PD for separate detection of alpha, beta and gamma radiation. IEEE Transactions on Nuclear Science, 47(6), 1979—1981. https://doi.org/10.1109/23.903832.

Downloads

Published

2023-10-20

How to Cite

BOYARINTSEV, A., NEPOKUPNA, T., RYBALKA, I., GALKIN, S., KOVALCHUK, S., SIBILIEVA, T., & KOLESNIKOV, O. (2023). Design and Manufacture of Scintillator-PMT Type Detectors Based on ZnSe(Al) and UPS-923A Plastic Scintillator for α-, β- and Mixed α-β-Radiation Devices. Science and Innovation, 19(5), 57–70. https://doi.org/10.15407/scine19.05.057

Issue

Section

Scientific and Technical Innovation Projects of the National Academy of Sciences