Development of a Dietary Supplement for Improving the Cognitive Functions and Lowering the Homocysteine Levels

Authors

DOI:

https://doi.org/10.15407/scine18.01.066

Keywords:

homocysteine, dietary supplement, vitamins B, vitamin C, implementation, cardiovascular diseases, cognitive functions, COVID-19

Abstract

Introduction. Hyperhomocysteinemia is a dangerous metabolic disorder that leads to a number of diseases.
Problem Statement. Urgent task is to develop pharmaceutical product for lowering the homocysteine levels without causing side effects.
Purpose. To develop the dietary supplement for reducing high homocysteine levels, which has a minimum content of components that may cause side effects; to test the supplement effect on the cognitive abilities of animals and to commercialize the product.
Materials and Methods. The developed dietary supplement Alfacognitin contains vitamins B6, B9, B12, C, and choline. For modelling experimental hyperhomocysteinemia in rats, the animals are kept on a diet rich in L-methionine. Blood homocysteine concentrations are determined by the ion exchange liquid column chromatography method with the use of an automatic amino acid analyzer. The behavioral responses and cognitive abilities of the rats have been studied with the use of behavioral tests (open field test, fear conditioning test, and social int e raction test). The production of Alfacognitin dietary supplement has been launched with Nutrimed Ltd. (Kyiv).
Results. Alfacognitin has been shown to reduce homocysteine levels, to improve cognitive abilities, social interaction and communication skills, and to compensate functional memory and learning disorders in animals with hyperhomocysteinemia. Specifications for the dietary supplement have been approved, a pilot technology for obtaining the capsule form of the drug has been developed, and an experimental batch has been manufactured.

Conclusions. Alfacognitin may reduce the homocysteine levels. Therefore, it may be used to normalize the functional state of the cardiovascular and nervous systems in patients with hyperhomocysteinemia, as well as to improve the cognitive functions, in particular in patients after COVID-19.

References

Kim, J., Kim, H., Roh, H., Kwon, Y. (2018). Causes of hyperhomocysteinemia and its pathological significance. Arch. Pharm. Res., 41(4), 372-383. https://doi.org/10.1007/s12272-018-1016-4

Martinez, Y., Li, X., Liu, G., Bin, P., Yan, W., Mas, D., … Yin, Y. (2017). The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids, 49(12), 2091-2098. https://doi.org/10.1007/s00726-017-2494-2

Esse, R., Barroso, M., Tavares de Almeida, I., Castro, R. (2019). The contribution of homocysteine metabolism disruption to endothelial dysfunction: state-of-the-art. Int. J. Mol. Sci., 20(4), 867. https://doi.org/10.3390/ijms20040867

Li, W., Xu, B., Cao, Y., Shao, Y., Wu, W., Zhou, J., … Wu, J. (2019). Association of maternal folate intake during pregnancy with infant asthma risk. Sci. Rep., 9(1), 8347. https://doi.org/10.1038/s41598-019-44794-z

Iscan, B., Tuzun, F., Eroglu Filibeli, B., Cilekar Micili, S., Ergur, B. U., Duman, N, … Kumral, A. (2019). Effects of maternal folic acid supplementation on airway remodeling and allergic airway disease development. J. Matern. Fetal. Neonatal. Med., 32(18), 2970-2978. https://doi.org/10.1080/14767058.2018.1452904

Yafei, W., Lijun, P., Jinfeng, W. (2012). Is the prevalence of MTHFR C677T polymorphism associated with ultraviolet radiation in Eurasia. J. Hum. Genet., 57(12), 780-786. https://doi.org/10.1038/jhg.2012.113

Yang, Z., Shi, J., He, Z. (2020). Predictors for imaging progression on chest CT from coronavirus disease 2019 (COVID-19) patients. Aging (Albany NY), 12(7), 6037-6048. https://doi.org/10.18632/aging.102999

Ponti, G., Roli, L., Oliva, G., Manfredini, M., Trenti, T., Kaleci, S., … Tomasi, A. (2021). Homocysteine (Hcy) assessment to predict outcomes of hospitalized Covid-19 patients: a multicenter study on 313 Covid-19 patients. Clin. Chem. Lab. Med., 59(9), e354-e357. https://doi.org/10.1515/cclm-2021-0168

Karst, M., Hollenhorst, J., Achenbach, J. (2020). Life-threatening course in coronavirus disease 2019 (COVID-19): Is there a link to methylenetetrahydrofolic acid reductase (MTHFR) polymorphism and hyperhomocysteinemia? Med. Hypotheses, 144, 110234. https://doi.org/10.1016/j.mehy.2020.110234

Miskowiak, K. W., Johnsen, S., Sattler, S. M., Nielsen, S., Kunalan, K., Rungby, J., … Porsberg, C. M. (2021). Cognitive impairments four months after COVID-19 hospital discharge: Pattern, severity and association with illness variables. Eur. Neuropsychopharmacol., 46, 39-48. https://doi.org/10.1016/j.euroneuro.2021.03.019

Xu, Y., Tian, Y., Wei, H. J., Dong, J. F., Zhang, J. N. (2011). Methionine diet-induced hyperhomocysteinemia accelerates cerebral aneurysm formation in rats. Neurosci. Lett., 494(2), 139-144. https://doi.org/10.1016/j.neulet.2011.02.076

Nair, A. B., Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm., 7(2), 27-31. https://doi.org/10.4103/0976-0105.177703

Bahceci, D., Anderson, L. L., Occelli Hanbury Brown, C. V., Zhou, C., Arnold, J. C. (2020). Adolescent behavioral abnormalities in a Scn1a+/- mouse model of Dravet syndrome. Epilepsy Behav., 103(pt. A), 106842. https://doi.org/10.1016/j.yebeh.2019.106842

Desmons, A., Thioulouse, E., Hautem, J. Y., Saintier, A., Baudin, B., Lamaziere, A., … Moussa, F. (2020). Direct liquid chromatography tandem mass spectrometry analysis of amino acids in human plasma. J. Chromatogr. A, 1622, 461135. https://doi.org/10.1016/j.chroma.2020.461135

Brown, M. J., Ameer, M. A., Beier, K. (2021). Vitamin B6 deficiency. Treasure Island (FL): StatPearls Publishing. URL: https://www.ncbi.nlm.nih.gov/books/NBK470579/ (Last accessed: 15.06.2021).

Froese, D. S., Fowler, B., Baumgartner, M. R. (2019). Vitamin B12, folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis., 42(4), 673-685. https://doi.org/10.1002/jimd.12009

Khan, K. M., Jialal, I. (2021). Folic acid deficiency. Treasure Island (FL): StatPearls Publishing. URL: https://www.ncbi. nlm.nih.gov/books/NBK535377/ (Last accessed: 15.06.2021).

Green, R., Allen, L. H., Bjorke-Monsen, A. L., Brito, A., Gueant, J. L., Miller, J. W., … Yajnik, C. (2017). Vitamin B12 deficiency. Nat. Rev. Dis. Primers., 3, 17040. https://doi.org/10.1038/nrdp.2017.40

Obeid, R. (2013). The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Nutrients, 5(9), 3481-3495. https://doi.org/10.3390/nu5093481

McRae, M. P. (2013). Betaine supplementation decreases plasma homocysteine in healthy adult participants: a metaanalysis. Journal of Chiropractic Medicine, 12(1), 20-25. https://doi.org/10.1016/j.jcm.2012.11.001

Rajaie, S., Esmaillzadeh, A. (2011). Dietary choline and betaine intakes and risk of cardiovascular diseases: review of epidemiological evidence. ARYA atherosclerosis, 7(2), 78-86.

Magana, A. A., Reed, R. L., Koluda, R., Miranda, C. L., Maier, C. S., Stevens, J. F. (2020). Vitamin C activates the folatemediated one-carbon cycle in C2C12 myoblasts. Antioxidants (Basel), 5(3), 217. https://doi.org/10.3390/antiox9030217

Abdullah, M., Jamil, R. T., Attia, F. N. (2021). Vitamin C (ascorbic acid). Treasure Island (FL): StatPearls Publishing. URL: https://www.ncbi.nlm.nih.gov/books/NBK499877/ (Last accessed: 15.06.2021).

Carr, A. C., Maggini, S. (2017). Vitamin C and immune function. Nutrients, 9(11), 1211. https://doi.org/10.3390/nu9111211

Monacelli, F., Acquarone, E., Giannotti, C., Borghi, R., Nencioni, A. (2017). Vitamin C, aging and Alzheimer's disease. Nutrients, 9(7), E670. https://doi.org/10.3390/nu9070670

Harvard Medical School. Listing of vitamins. URL: https://www.health.harvard.edu/staying-healthy/listing_of_vitamins (Last accessed: 31.08.2020).

U.S. Food & Drug Administration. Daily Value on the New Nutrition and Supplement Facts Labels. URL: https://www. fda.gov/food/new-nutrition-facts-label/daily-value-new-nutrition-and-supplement-facts-labels (Last accessed: 05.05.2020).

Golembiovska, O. I., Galkin, A. Y., Besarab, A. B. (2019). Development and validation of a dissolution test for ursodeoxycholic acid and taurine from combined formulation. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 20(3), 377-394.

Semenyuk, S. M., Shybetsky, V. Yu., Povodzinsky, V. M., Kostyk, S. I. (2018). Assessment of critical parameters of the cultivating process in biotechnology of active pharmaceutical ingredients. Innov. Biosyst. Bioeng., 2(2), 118-124. https://doi.org/10.20535/ibb.2018.2.2.123469

Volodina, T. T., Korotkevich, N. V., Romaniuk, S. I., Galkin, O. Y., Kolybo, D. V., Komisarenko, S. V. (2017). Implementation of dietary supplements with effect of detoxication and improvement of osteogenesis and metabolism. Science and Innovation, 13(6), 39-50. https://doi.org/10.15407/scine13.06.039

Bondarenko, L., Gorchakova, N., Galkin, A. (2018). Efficacy profile of the homeopathic combination for influenza and acute respiratory viral diseases treatment and prevention. Innov. Biosyst. Bioeng., 2(4), 252-261. https://doi.org/10.20535/ibb.2018.2.4.148441

Dissette, V., Cassino, R., Bondarenko, L., Motronenko, V. (2020). Powder fixed combination with antiseptic and barrier properties for wound management: safety and efficacy aspect. Innov. Biosyst. Bioeng., 4(3), 149-159. https://doi.org/10.20535/ibb.2020.4.3.211699

Galkin, O. Yu., Lutsenko, T. M., Gorshunov, Yu. V., Motronenko, V. V. (2017). Development of the method for microbiological purity testing of recombinant human interleukin-7-based product. Ukr. Biochem. J., 89(3), 52-59. https://doi.org/10.15407/ubj89.03.052

Shayakhmetova, G. M., Bondarenko, L. B., Voronina, A. K., Kovalenko, V. M. (2017). Comparative investigation of methionine and novel formulation Metovitan protective effects in Wistar rats with testicular and epididymal toxicity induced by anti-tuberculosis drugs co-administration. Food Chem. Toxicol., 99, 222-230. https://doi.org/10.1016/j.fct.2016.12.001

Patent of Ukraine № 131124. Komisarenko, S. V., Kolybo, D. V., Galkin, O. Yu., Lugovska, N.E., Romaniuk, S.I. Remedy for lowering homocysteine level and improving cognitive functions in human [in Ukrainian].

Downloads

Published

2022-02-14

How to Cite

Romaniuk, S., Tykhonenko, T., Siromolot, A., Guzyk, M., Lugovska, N., Galkin, O., Kuchmerovska, T., Kolybo, D., & Komisarenko, S. (2022). Development of a Dietary Supplement for Improving the Cognitive Functions and Lowering the Homocysteine Levels. Science and Innovation, 18(1), 66–75. https://doi.org/10.15407/scine18.01.066

Issue

Section

Scientific and Technical Innovation Projects of the National Academy of Sciences