Modeling of the signal propagation in real systems with finite interval and absorption

Authors

  • Yu. G. Kryvonos V. M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kiev
  • I. T. Selezov Institute of Hydromechanics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2016.04.035

Keywords:

absorption, finite interval, Laplace transform, wave propagation

Abstract

The wave propagation is investigated on the basis of a generalized hyperbolic equation with dissipation describing the wave propagation with finite velocity. The propagation of harmonic waves and the initial boundary-value problem of a propagation of the pulse from the input on a finite interval with full absorption are analyzed on the basis of the Laplace transformation and a numerical inverse transformation.

Downloads

Download data is not yet available.

References

Wiener N. Cybernetics or control and communication in the animal and the machine, Cambrifge: Massachus. Institute of Techonogy, 1961. https://doi.org/10.1037/13140-000

Selezov I. T., Kryvonos Yu. G. Wave problems of biohydrodynamics and biophysics, Kyiv: Nauk. Dumka, 2013 (in Russian).

Mc Cartin B. J. Appl. Math. Sci., 2009, 3, No 42: 2055–2083.

Vabishchevich P. N. BIT Number Math., 2013. DOI 10.1007/s10 543–013–0423–7.

Doetsch G. Anleitung zum praktischen gebrauch der Laplace-Transformation, und der Z-transformation, München: R. Oldenbourg, 1956.

Courant R., Hilbert D. Methods of mathematical physics. V. 2. New York-London: Interscience, 1962.

Kryvonos Yu. G., Selezov I. T. Dopov. Nac. akad. nauk Ukr., 2014, No 9: 40–43 (in Russian).

Maxwell J. C. A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc.,1865, 155: 459–512. https://doi.org/10.1098/rstl.1865.0008

Maxwell J. C. Philos. Trans. Roy. Soc., London,1867, 157: 49–88. https://doi.org/10.1098/rstl.1867.0004

Cattaneo C. Atti Seminario Mat. Fis. Univ. Modena, 1948, 3: 83–124.

Vernotte P. C. R. Hebd. Séanc. Acad. Sci., 1958, 246, No 22: 3154–3155; La veritable equation de la chaleur, 1958, 247: No 23: 2103–2105.

Landau L. D., Lifshitz E. M. The Classical Theory of Fields of a Course of Theoretical Physics. V. 2: Pergamon Press, 1971.

Luikov A. V. Int. J. Heat Mass Transfer., 1966, 9: 139–152. https://doi.org/10.1016/0017-9310(66)90128-1

Selezov I. T. Cybernetics and Computat. Eng. Kiev: Nauk. Dumka, 1969, Iss. 1: 31–137 (in Russian).

Selezov I. T., Krivonos Yu. G. Mathematical methods in problems of propagation and diffraction of waves, Kyiv: Nauk. Dumka, 2012 (in Russian).

Published

19.10.2024

How to Cite

Kryvonos, Y. G., & Selezov, I. T. (2024). Modeling of the signal propagation in real systems with finite interval and absorption . Reports of the National Academy of Sciences of Ukraine, (4), 35–40. https://doi.org/10.15407/dopovidi2016.04.035

Issue

Section

Information Science and Cybernetics