Modeling of the signal propagation in real systems with finite interval and absorption
DOI:
https://doi.org/10.15407/dopovidi2016.04.035Keywords:
absorption, finite interval, Laplace transform, wave propagationAbstract
The wave propagation is investigated on the basis of a generalized hyperbolic equation with dissipation describing the wave propagation with finite velocity. The propagation of harmonic waves and the initial boundary-value problem of a propagation of the pulse from the input on a finite interval with full absorption are analyzed on the basis of the Laplace transformation and a numerical inverse transformation.
Downloads
References
Wiener N. Cybernetics or control and communication in the animal and the machine, Cambrifge: Massachus. Institute of Techonogy, 1961. https://doi.org/10.1037/13140-000
Selezov I. T., Kryvonos Yu. G. Wave problems of biohydrodynamics and biophysics, Kyiv: Nauk. Dumka, 2013 (in Russian).
Mc Cartin B. J. Appl. Math. Sci., 2009, 3, No 42: 2055–2083.
Vabishchevich P. N. BIT Number Math., 2013. DOI 10.1007/s10 543–013–0423–7.
Doetsch G. Anleitung zum praktischen gebrauch der Laplace-Transformation, und der Z-transformation, München: R. Oldenbourg, 1956.
Courant R., Hilbert D. Methods of mathematical physics. V. 2. New York-London: Interscience, 1962.
Kryvonos Yu. G., Selezov I. T. Dopov. Nac. akad. nauk Ukr., 2014, No 9: 40–43 (in Russian).
Maxwell J. C. A dynamical theory of the electromagnetic field, Phil. Trans. Roy. Soc.,1865, 155: 459–512. https://doi.org/10.1098/rstl.1865.0008
Maxwell J. C. Philos. Trans. Roy. Soc., London,1867, 157: 49–88. https://doi.org/10.1098/rstl.1867.0004
Cattaneo C. Atti Seminario Mat. Fis. Univ. Modena, 1948, 3: 83–124.
Vernotte P. C. R. Hebd. Séanc. Acad. Sci., 1958, 246, No 22: 3154–3155; La veritable equation de la chaleur, 1958, 247: No 23: 2103–2105.
Landau L. D., Lifshitz E. M. The Classical Theory of Fields of a Course of Theoretical Physics. V. 2: Pergamon Press, 1971.
Luikov A. V. Int. J. Heat Mass Transfer., 1966, 9: 139–152. https://doi.org/10.1016/0017-9310(66)90128-1
Selezov I. T. Cybernetics and Computat. Eng. Kiev: Nauk. Dumka, 1969, Iss. 1: 31–137 (in Russian).
Selezov I. T., Krivonos Yu. G. Mathematical methods in problems of propagation and diffraction of waves, Kyiv: Nauk. Dumka, 2012 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.