On the solution of reverse Dido’s Problem for convex surfaces of revolution

Authors

  • K. D. Drach Sumy State University

DOI:

https://doi.org/10.15407/dopovidi2016.04.007

Keywords:

normal curvature, Pontryagin’s maximum principle, reverse isoperimetric inequality, λ-convexity

Abstract

By applying Pontryagin’s maximum principle, we prove a reverse isoperimetric inequality and thus solve a reverse Dido’s Problem for λ-convex surfaces of revolution in the three-dimensional Euclidean space.

Downloads

Download data is not yet available.

References

Burago Yu. D., Zalgaller V. A. Geometric inequalities, Leningrad: Nauka, 1980 (in Russian).

Howard R., Treibergs A. Rocky Mountain J. Math., 1995, 25, No 2: 635–684. https://doi.org/10.1216/rmjm/1181072242

Gard A. C. Reverse Isoperimetric Inequalities in R3

: PhD Thesis, Columbus: Ohio State University, 2012.

Borisenko A., Drach K. Math. Notes, 2014, 95, No 5: 590–598 (in Russian). https://doi.org/10.1134/S0001434614050034

Drach K. D. Dopov. Nac. akad. nauk Ukr., 2014, No 11: 11–15 (in Russian; English version: arXiv:1402.2688 [math.DG]).

Borisenko A., Drach K. J. Dyn. Control Syst., 2015, 21, No 3: 311–327. https://doi.org/10.1007/s10883-014-9221-z

van Heijenoort J. Comm. Pure Appl. Math., 1952, 5: 223–242. https://doi.org/10.1002/cpa.3160050302

Blaschke W. Kreis und Kugel, Moskva: Nauka, 1967 (in Russian).

Borisenko A. A., Drach K. D. Dopov. Nac. akad. nauk Ukr., 2015, No 3: 11–16 (in Russian; English version: arXiv: 1402.2691[math.DG]).

Milyutin A. A., Dmitruk A. V., Osmolovskij N. P. Maximum principle in optimal control, Moscow: Izd. CPI pri mekh.-mat. fakul’tete MGU, 2004 (in Russian).

Kelley H. J., Kopp R. E., Moyer H. G. Topics in Optimization, Ed. G. Leitmann, New York: Academic Press, 1967: 63–103.

Borisenko A., Drach K. Sb. Math., 2013, 204, No 11: 1565–1583. https://doi.org/10.1070/SM2013v204n11ABEH004349

Borisenko A. Diff. Geom. Appl., 2002, 17: 111–121. https://doi.org/10.1016/S0926-2245(02)00102-X

Published

19.10.2024

How to Cite

Drach, K. D. (2024). On the solution of reverse Dido’s Problem for convex surfaces of revolution . Reports of the National Academy of Sciences of Ukraine, (4), 7–12. https://doi.org/10.15407/dopovidi2016.04.007