Filiform crystals in meteorites

Authors

  • V.P. Semenenko M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kiev
  • T.M. Gorovenko M.P. Semenenko Institute of Geochemistry, Mineralogy and Ore Formation of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.09.076

Keywords:

filiform crystals, metamorphic transformation, meteorites, minerals, origin

Abstract

The original and literature data on the findings of filiform crystals (FFC) in meteorites are given. It is shown that they have pre-terrestrial and terrestrial origins. Rhabdite crystals in iron meteorites and pallasites, taenite ones in ataxites, and graphite ones in carbonaceous xenoliths of chondrites are the most common among the pre-terrestrial FFC. It is assumed that their formation is a result of solid phase transformations during the slow cooling of meteorite parent bodies. Unlike them, the olivine and Ca-pyroxene FFC within a fine-grained matter of chondrites and Fe,Ni-metal FFC in pallasites are rare. The morphological characteristics of the meteoritic FFC are similar to those of the artificially grown ones, although they differ by a narrower variety of crystallographic forms and the priority of formation conditions.

Downloads

Download data is not yet available.

References

Maleev, M. N. (1971). Properties and origin of the natural filiform crystals and aggregates. Moscow: Nauka (in Russian).

Syrkin, V. G. (1989). Materials of the future. About the metal filiform crystals. Moscow: Gosizdat (in Russian).

Semenenko, V. P. & Girich, A. L. (1995). Mineralogy of a unique graphite-containing fragment in the Krymka chondrite (LL3). Mineral. Mag., 59, No. 396, pp. 443-454. https://doi.org/10.1180/minmag.1995.059.396.06

Artem'ev, S. R. & Belan, S. V. (2013). Properties and main methods of the filiform crystals producing. Vost.- Evrop. zhurn. peredovyh tehnologij, 5, No. 1, pp. 22-25 (in Russian).

Berezhkova, G. V. (1969). Filiform crystals. Moscow: Nauka (in Russian).

Givargizov, E. I. (1977). Growth of filiform and lamellar crystals from vapor. Moscow: Nauka (in Russian).

Semenenko, V. P., Bishoff, A., Weber, I. & Girich, A. L. (2001). Mineralogy of fine-grained material in the Krymka (LL3.1) chondrite. Meteorit. Planet. Sci. 36, pp. 1067-1085. https://doi.org/10.1111/j.1945-5100.2001.tb01945.x

Weisberg, M. K., Zolensky, M. E. & Prinz, M. (1997). Fayalitic olivine in matrix of the Krymka LL3.1 chondrite: Vapor-solid growth in the solar nebula. Meteorit. Planet. Sci., 32, No. 6, pp. 791-801. https://doi.org/10.1111/j.1945-5100.1997.tb01570.x

Semenenko, V. P., Girich, A. L. & Nittler, L. R. (2004). An exotic kind of cosmic material: Graphite-containing xenoliths from the Krymka (LL3.1) chondrite. Geochim. Cosmochim. Acta, 68, No. 3, pp. 455-475. https://doi.org/10.1016/S0016-7037(03)00457-5

Shyrinbekova, S. N. & Semenenko, V. P. (2006). Features of the Chinga ataxite selective weathering. Zap. Ukr. mineral. tov-va, 3, pp. 196-199 (in Ukrainian).

Clarke, R. S., Jr. & Goldstein, J. I. (1978). Schreibersite growth and its influence on the metallography of coarse-structured iron meteorites. Smithsonian contributions to the earth sciences, No. 21. Washington: Smithsonian Institution Press.

Grigor'ev, D. P., Krecer, Y. L. (1983). About ontogeny of schreibersite and rhabdite in the Sikhote-Alin meteorite. Dokl. AN SSSR, 270, No. 5, pp. 1192-1195 (in Russian).

Semenenko, V. P., Kozlov, I. S. & Tertychnaja, B. V. (1986). Evidences of shock metamorphism in the Mar'inka iron meteorite. Meteoritika, 45, pp. 102-105 (in Russian).

Semenenko, V.P., Girich, A.L. & Kychan, N.V. (2012). Fine-grained xenolith AL1 in the Allende (CV3) chondrite: mineralogy and origin. Dopov. Nac. akad. nauk Ukr., No. 8, pp. 86-93 (in Ukrainian).

Gorovenko, T. M. & Semenenko, V. P. (2011). Nickel-iron morphological features in the Omolon pallasite. Zap. Ukr. mineral. tov-va, 8, pp. 45-48 (in Ukrainian).

Published

17.09.2024

How to Cite

Semenenko, V., & Gorovenko, T. (2024). Filiform crystals in meteorites . Reports of the National Academy of Sciences of Ukraine, (9), 76–83. https://doi.org/10.15407/dopovidi2017.09.076