A single pole and a duble pole in the inverse scattering transform method

Authors

  • V.О. Vakhnenko Subbotin Institute of Geophysics of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.07.010

Keywords:

double poles, inverse problem, spectral data

Abstract

For the discrete part of spectral data in the inverse scattering transform method, the double poles and a single pole are taken into account. The scope of application for the suggested spectral data is demonstrated through the analysis of the Vakhnenko—Parkes equation that allows new solutions to be obtained. This approach can be applied to other integrable nonlinear equations.

Downloads

References

Kraenkel, R. A., Leblond, H. & Manna, M. A. (2014). An integrable evolution equation for surface waves in deep water. J. Phys. A: Math. Theor., 47, No. 2, 025208 (17pp). https://doi.org/10.1088/1751-8113/47/2/025208

Sazonov, S. V. & Ustinov, N. V. (2017). Nonlinear propagation of vector extremely short pulses in a medium symmetric and asymmetric molecules. J. Exp. Theor. Phys., 124, No. 2, P. 213-230. https://doi.org/10.1134/S1063776117010150

Vakhnenko, V. O. (1999). High-frequency soliton-like waves in a relaxing medium. J. Math. Phys., 40, pp. 2011-2020. https://doi.org/10.1063/1.532847

Kuetche, V. K. (2015). Barothropic relaxing media under pressure perturbations: Nonlinear dynamics. Dynamics Atmosph. Oceans., 72, pp. 21-37. https://doi.org/10.1016/j.dynatmoce.2015.10.001

Kuetche, V. K. (2016). Inhomogeneous exchange within ferrites: Magnetic solitons and their interactions. J. Magnetism Magnetic Materials, 398, pp. 70-81. https://doi.org/10.1016/j.jmmm.2015.08.120

Vakhnenko, V. O. & Parkes, E. J. (2002). The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos, Solitons and Fractals, 13(9), pp. 1819-1826. https://doi.org/10.1016/S0960-0779(01)00200-4

Ye, Y., Song, J., Shen, S. & Di, Y. (2012). New coherent structures of the Vakhnenko-Parkes equation. Results in Physics, 2, pp. 170-174. https://doi.org/10.1016/j.rinp.2012.09.011

Vakhnenko, V. O. & Parkes, E. J. (2016). Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation. Advances in Mathematical Physics, 2016, Article ID 2916582, 39 p. https://doi.org/10.1155/2016/2916582

Vakhnenko, V. A. (1992). Solitons in a nonlinear model medium. J. Phys. A: Math. Gen., 25, pp. 4181-4187. https://doi.org/10.1088/0305-4470/25/15/025

Roshid, H., Kabir, M. R., Bhowmik, R. C. & Datta, B. K. (2014). Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp(−ϕ(ξ)) -expansion method. SpringerPlus. 3, 692 (10 pp). https://doi.org/10.1186/2193-1801-3-692

Vakhnenko, V. O. & Parkes, E. J. (2016). The inverse problem for some special spectral data. Chaos, Solitons and Fractals, 82, pp. 116-124. https://doi.org/10.1016/j.chaos.2015.11.012

Caudrey, P. J. (1982). The inverse problem for a general N × N spectral equation. Physica D, D6, pp. 51-66. https://doi.org/10.1016/0167-2789(82)90004-5

Satsuma, J. & Kaup, D. J. (1977). A Bdcklund transformation for a higher order Korteweg-de Vries equation. J. Phys. Society Japan, 43, pp. 692-697. https://doi.org/10.1143/JPSJ.43.692

Hirota, R. (1980). Direct methods in soliton theory. Solitons (Eds. R. K. Bullough, P. J. Caudrey), New York, Berlin: Springer, pp. 157-176. https://doi.org/10.1007/978-3-642-81448-8_5

Vakhnenko, V. O. & Parkes, E. J. (2012). The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method. Chaos, Solitons and Fractals, 45, pp. 846-852. https://doi.org/10.1016/j.chaos.2012.02.019

Published

15.09.2024

How to Cite

Vakhnenko, V. (2024). A single pole and a duble pole in the inverse scattering transform method . Reports of the National Academy of Sciences of Ukraine, (7), 10–17. https://doi.org/10.15407/dopovidi2017.07.010