A single pole and a duble pole in the inverse scattering transform method
DOI:
https://doi.org/10.15407/dopovidi2017.07.010Keywords:
double poles, inverse problem, spectral dataAbstract
For the discrete part of spectral data in the inverse scattering transform method, the double poles and a single pole are taken into account. The scope of application for the suggested spectral data is demonstrated through the analysis of the Vakhnenko—Parkes equation that allows new solutions to be obtained. This approach can be applied to other integrable nonlinear equations.
Downloads
References
Kraenkel, R. A., Leblond, H. & Manna, M. A. (2014). An integrable evolution equation for surface waves in deep water. J. Phys. A: Math. Theor., 47, No. 2, 025208 (17pp). https://doi.org/10.1088/1751-8113/47/2/025208
Sazonov, S. V. & Ustinov, N. V. (2017). Nonlinear propagation of vector extremely short pulses in a medium symmetric and asymmetric molecules. J. Exp. Theor. Phys., 124, No. 2, P. 213-230. https://doi.org/10.1134/S1063776117010150
Vakhnenko, V. O. (1999). High-frequency soliton-like waves in a relaxing medium. J. Math. Phys., 40, pp. 2011-2020. https://doi.org/10.1063/1.532847
Kuetche, V. K. (2015). Barothropic relaxing media under pressure perturbations: Nonlinear dynamics. Dynamics Atmosph. Oceans., 72, pp. 21-37. https://doi.org/10.1016/j.dynatmoce.2015.10.001
Kuetche, V. K. (2016). Inhomogeneous exchange within ferrites: Magnetic solitons and their interactions. J. Magnetism Magnetic Materials, 398, pp. 70-81. https://doi.org/10.1016/j.jmmm.2015.08.120
Vakhnenko, V. O. & Parkes, E. J. (2002). The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method. Chaos, Solitons and Fractals, 13(9), pp. 1819-1826. https://doi.org/10.1016/S0960-0779(01)00200-4
Ye, Y., Song, J., Shen, S. & Di, Y. (2012). New coherent structures of the Vakhnenko-Parkes equation. Results in Physics, 2, pp. 170-174. https://doi.org/10.1016/j.rinp.2012.09.011
Vakhnenko, V. O. & Parkes, E. J. (2016). Approach in theory of nonlinear evolution equations: the Vakhnenko-Parkes equation. Advances in Mathematical Physics, 2016, Article ID 2916582, 39 p. https://doi.org/10.1155/2016/2916582
Vakhnenko, V. A. (1992). Solitons in a nonlinear model medium. J. Phys. A: Math. Gen., 25, pp. 4181-4187. https://doi.org/10.1088/0305-4470/25/15/025
Roshid, H., Kabir, M. R., Bhowmik, R. C. & Datta, B. K. (2014). Investigation of solitary wave solutions for Vakhnenko-Parkes equation via exp-function and exp(−ϕ(ξ)) -expansion method. SpringerPlus. 3, 692 (10 pp). https://doi.org/10.1186/2193-1801-3-692
Vakhnenko, V. O. & Parkes, E. J. (2016). The inverse problem for some special spectral data. Chaos, Solitons and Fractals, 82, pp. 116-124. https://doi.org/10.1016/j.chaos.2015.11.012
Caudrey, P. J. (1982). The inverse problem for a general N × N spectral equation. Physica D, D6, pp. 51-66. https://doi.org/10.1016/0167-2789(82)90004-5
Satsuma, J. & Kaup, D. J. (1977). A Bdcklund transformation for a higher order Korteweg-de Vries equation. J. Phys. Society Japan, 43, pp. 692-697. https://doi.org/10.1143/JPSJ.43.692
Hirota, R. (1980). Direct methods in soliton theory. Solitons (Eds. R. K. Bullough, P. J. Caudrey), New York, Berlin: Springer, pp. 157-176. https://doi.org/10.1007/978-3-642-81448-8_5
Vakhnenko, V. O. & Parkes, E. J. (2012). The singular solutions of a nonlinear evolution equation taking continuous part of the spectral data into account in inverse scattering method. Chaos, Solitons and Fractals, 45, pp. 846-852. https://doi.org/10.1016/j.chaos.2012.02.019
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.