Support effect on the catalytic activity of palladium nanoparticles in the o-nitrotoluene hydrogenation

Authors

  • Ye.Yu. Kalishyn L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev
  • V.V. Ordynskyi L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev
  • I.B. Bychko L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev
  • Z.V. K Kaidanovych L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev
  • A.I. Trypolskyi L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev
  • P.E. Strizhak L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2017.03.063

Keywords:

hydrogenation of ethylene, nanoparticles of palladium, size effect

Abstract

The catalytic activity of nanocomposite materials with palladium nanoparticles deposited from a colloidal solution on activated carbon, nitrogen-containing carbon nanotubes, graphite, and γ-Al2O3 in the o-nitrotoluene hydrogenation is studied. A significant effect of the carbon support nature on the catalyst activity is found. It is shown that the highest activity is revealed by colloidal palladium. In the case of supports strongly interacting with reaction products, the catalytic activity of supported catalysts significantly reduces.

Downloads

Download data is not yet available.

References

Blondet, F. R., Vincent, T., Guibal, E. (2008). Hydrogenation of nitrotoluene using palladium supported on chitosan hollow fiber: catalyst characterization and influence of operative parameters studied by experimental design methodology. Int. J. Biol. Macromol., 43, Iss. 1, pp. 69-78. https://doi.org/10.1016/j.ijbiomac.2007.11.008

Acton, Q. A. (2013). Advances in Toluene Research and Application. Atlanta: Scholarly Editions.

Hansen, P. L., Wagner, J. B., Helveg, S., Rostrup-Nielsen, J. R., Clausen, B. S. & Topsoe. H. (2002). Atom-Resolved Imaging of Dynamic Shape Changes in Supported Copper Nanocrystals. Science, 295, Iss. 5562, pp. 2053-2055. https://doi.org/10.1126/science.1069325

Wu, Z., Chen, J. & Di, Q., Zhang, M. (2012). Size-controlled synthesis of a supported Ni nanoparticle catalyst for selective hydrogenation of p-nitrophenol to p-aminophenol. Catal. Commun., 18, pp. 55-59. https://doi.org/10.1016/j.catcom.2011.11.015

Kim, H., Lim., S. C. & Lee, Y. H. (2011). Size effect of two-dimensional thermal radiation. Phys. Lett. A., 375, Iss. 27, pp. 2661-2664. https://doi.org/10.1016/j.physleta.2011.05.051

Borodzinski, A. & Cybulski, A. (2000). The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits. Appl. Catal. A-Gen., 198, Iss. 1-2, pp. 51-66. https://doi.org/10.1016/S0926-860X(99)00498-6

Yen, P. W. & Chou, T. C. (2000). Temperature programmed oxidation of palladium catalyst: effect of support on the oxygen adsorption behavior. Appl. Catal. A-Gen., 198, Iss. 1-2, pp. 23-31. https://doi.org/10.1016/S0926-860X(99)00507-4

Toebes, M. L., van Dillen, J. A. & de Jong K. P. (2001). Synthesis of supported palladium catalysts. J. Mol. Catal. A-Chem., 173, Iss. 1-2, pp. 75-98. https://doi.org/10.1016/S1381-1169(01)00146-7

Rodriguez-Reinoso, F. (1998). The role of carbon materials in heterogeneous catalysis. Carbon, 36, Iss. 3, pp. 159-175. https://doi.org/10.1016/s0008-6223(97)00173-5

Roth, D., Celin, P., Kaddouri, A., Garbowski, E., Primet, M. & Tena, E. (2006). Oxidation behaviour and catalytic properties of Pd/Al2O3 catalysts in the total oxidation of methane. Catal. Today, 112, Iss. 1-4, pp. 134-138. https://doi.org/10.1016/j.cattod.2005.11.048

Pisanu, A. M., Gigola, C. E. (1999). NO decomposition and NO reduction by CO over Pd/α-Al2O3. Appl. Catal. B-Environ., 20, Iss. 3, pp. 179-189. https://doi.org/10.1016/S0926-3373(98)00110-6

Ng, Y. H., Ikeda, S., Harada, T. et al. (2008). High Sintering Resistance of Platinum Nanoparticles Embedded in a Microporous Hollow Carbon Shell Fabricated Through a Photocatalytic Reaction. Langmuir. 24, Iss. 12, pp. 6307-6312. https://doi.org/10.1021/la800045u

Xiong Y., Chen, J., Wiley, B., Xia, Y. & Yin, Y. (2005). Understanding the Role of Oxidative Etching in the Polyol Synthesis of Pd Nanoparticles with Uniform Shape and Size. J. Am. Chem. Soc., 127, Iss. 20, pp. 7332-7333. https://doi.org/10.1021/ja0513741

Grace, A. N. & Pandian, K. (2007). One pot synthesis of polymer protected Pt, Pd, Ag and Ru nanoparticles and nanoprisms under reflux and microwave mode of heating in glycerol-A comparative study. Mat. Chem. Phys., 104, Iss. 1, pp. 191-198. https://doi.org/10.1016/j.matchemphys.2007.03.009

Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon, 32, Iss. 5, pp. 759-769. https://doi.org/10.1016/0008-6223(94)90031-0

Published

22.05.2024

How to Cite

Kalishyn, Y., Ordynskyi, V., Bychko, I., Kaidanovych, Z. K., Trypolskyi, A., & Strizhak, P. (2024). Support effect on the catalytic activity of palladium nanoparticles in the o-nitrotoluene hydrogenation . Reports of the National Academy of Sciences of Ukraine, (3), 63–69. https://doi.org/10.15407/dopovidi2017.03.063