A somposition-based approach to the description of the solid-solution hardening in binary solutions with unrestricted solubility of components

Authors

  • S.A. Firstov Frantsevich Institute for Problems of Materials Sciences of the NAS of Ukraine, Kiev
  • T.G. Rogul Frantsevich Institute for Problems of Materials Sciences of the NAS of Ukraine, Kiev

DOI:

https://doi.org/10.15407/dopovidi2018.08.058

Keywords:

binary solid solutions, composite-cluster structure, critical shear stress

Abstract

A new approach based on the assumption of a composition-cluster structure to the description of the hardening in binary solid solutions with unrestricted solubility of components is considered. An expression is proposed for the concentration dependence of the critical shear stress in unbounded solids, in which the hardening with increasing the concentration of a doping component is proportional to the value of c (1 − c).

Downloads

Download data is not yet available.

References

Hirt, J. & Lote, I. (1972). Theory of dislocations. Moscow: Atomizdat (in Russian).

Butt, M. Z. & Feltham, P. (1993). Review solid-solution hardening. J. Mater. Sci ., 28, pp. 2557-2576. doi: https://doi.org/10.1007/BF00356192

Patinet, S. & Proville, L. (2008). Depinning transition for a screw dislocation in a model solid solution. Phys. Rev. B, 78, 104-109. doi: https://doi.org/10.1103/PhysRevB.78.104109

Mott, N. F. & Nabarro, F. R. N. (1948). Disloc ation theory and transient creep. In Report of a co nference on the strength of solids (pp. 1-19). London: The Physical Society.

Fleischer, R. & Hibbard, W. (1967). Hardening in the formation of a solid solution. Proceedings of the conference Structure and mechanical properties of metals, Scientific. fiz. Laboratory, Treadington, Middlesex, January 1963. Moscow: Metallurgiya (in Russian).

Labusch, R. (1970). A statistical theory of solid solution hardening. Phys. Stat. Sol., 41, pp. 659-669. doi: https://doi.org/10.1002/pssb.19700410221

Seeger, V. A. (1956). Theorie der Kristallplastizit ä t. IV. Verfestigung und Gleitmechanismus dichtest ge- packter Metalle und Legierungen. Z. Naturforschg., 11 a, pp. 985-998.

Sashs, Von G. & Weerts, J. (1930). Zugversuche an Gold-Silberkristallen. Z. Phys., 62, Iss. 7-8, pp. 473-493.

Chalmers, B. (1963). Physical metallography. Moscow: Metallurgizdat (in Russian).

Milne, I. & Smallman, R. E. (1968). Plastic deformation of niobium (columbium)-molybdenum alloy single crystals. Trans. Met. Soc . AIME , 242, pp. 120-126.

Carlson, O. N. & Eustice, A. L. (1959). Vanadium-chromium alloy system. Ames Laboratory Technical Reports. 12. Iowa State University. Retrieved from http://lib.dr.iastate.edu/ameslab_isreports/12 doi: https://doi.org/10.2172/4221916

ASTM Hardness Conversion Chart — Automation and Metrology Inc. Retrieved from http://www.auto-et.com/Rockwell_hardness_tester/ASTM_Hardness_Chart.htm

Tabor, D. (1951). The hardness of metals. Oxford, UK: Clarendon Press.

Trefilov, V. I, Milman, Yu. V. & Firstov, S. A. (1975). Physical basis of strength of refractory materials. Kiev: Naukova Dumka (in Russian).

Jaffi, R. & Khan, E. (1967). In Structure and mechanical properties of metals (p. 341). Moscow: Metallurgiya (in Russian).

Published

20.05.2024

How to Cite

Firstov, S., & Rogul, T. (2024). A somposition-based approach to the description of the solid-solution hardening in binary solutions with unrestricted solubility of components . Reports of the National Academy of Sciences of Ukraine, (8), 58–64. https://doi.org/10.15407/dopovidi2018.08.058