2b-anisotropic Hörmander spaces in cylindrical domains

Authors

  • V.M. Los NTU of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/dopovidi2018.06.003

Keywords:

2b-anisotropic Hörmander space, cylindrical domain, interpolation with a function parameter

Abstract

We introduce a class of 2b-anisotropic inner product Hörmander spaces in a cylindrical domain. These spaces are obtained by the interpolation with a function parameter between anisotropic Sobolev spaces. A new condition for the continuity of distributions from the introduced spaces together with generalized partial derivatives up to some order is obtained.

Downloads

References

Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-46175-0

Mikhailets, V. A. & Murach, A. A. (2014). Hörmander spaces, interpolation, and elliptic problems. Berlin: De Gruyter. doi: https://doi.org/10.1515/9783110296891

Los, V. & Murach, A. A. (2013). Parabolic problems and interpolation with a function parameter. Methods Funct. Anal. Topol., 19, No. 2, pp. 146-160.

Los, V. M. (2015). Mixed problems for the two-dimensional heat-conduction equation in anisotropic Hörmander spaces. Ukr. Math. J., 67, No. 5, pp. 735-747. doi: https://doi.org/10.1007/s11253-015-1111-3

Los, V., Mikhailets, V. A. & Murach, A. A. (2017). An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Commun. Pur. Appl. Anal., 16, No. 1. pp. 69-97. doi: https:// doi.org/10.3934/cpaa.2017003

Los, V. & Murach, A. (2017). Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces. Open Mathematics, 15, pp. 57-76. doi: https://doi.org/10.1515/math-2017-0008

Los, V. M. & Murach, A. A. (2014). Parabolic mixed problems in spaces of generalized smoothness. Dopov. Nac. akad. nauk. Ukr., No. 6, pp. 23-31 (in Russian). doi: https://doi.org/10.15407/dopovidi2014.06.023

Los, V. M. (2016). Anisotropic Hörmander spaces on the lateral surface of a cylinder. J. Math. Sci., 217, No. 4. pp. 456-467. doi: https://doi.org/10.1007/s10958-016-2985-9

Volevich, L. R. & Paneah, B. P. (1965). Certain spaces of generalized functions and embedding theorems. Russ. Math. Surv., 20, No. 1. pp. 1-73. doi: https://doi.org/10.1070/RM1965v020n01ABEH004139

Seneta, E. (1976). Regularly varying functions. Lecture notes in mathematics, vol. 508. Berlin: Springer. doi: https://doi.org/10.1007/BFb0079658

Mikhailets, V. A. & Murach, A. A. (2008). Interpolation with a function parameter and refined scale of spaces. Methods Funct. Anal. Topol., 14, No. 1, pp. 81-100.

Published

15.05.2024

How to Cite

Los, V. (2024). 2b-anisotropic Hörmander spaces in cylindrical domains . Reports of the National Academy of Sciences of Ukraine, (6), 3–11. https://doi.org/10.15407/dopovidi2018.06.003