2b-anisotropic Hörmander spaces in cylindrical domains
DOI:
https://doi.org/10.15407/dopovidi2018.06.003Keywords:
2b-anisotropic Hörmander space, cylindrical domain, interpolation with a function parameterAbstract
We introduce a class of 2b-anisotropic inner product Hörmander spaces in a cylindrical domain. These spaces are obtained by the interpolation with a function parameter between anisotropic Sobolev spaces. A new condition for the continuity of distributions from the introduced spaces together with generalized partial derivatives up to some order is obtained.
Downloads
References
Hörmander, L. (1963). Linear partial differential operators. Berlin: Springer. doi: https://doi.org/10.1007/978-3-642-46175-0
Mikhailets, V. A. & Murach, A. A. (2014). Hörmander spaces, interpolation, and elliptic problems. Berlin: De Gruyter. doi: https://doi.org/10.1515/9783110296891
Los, V. & Murach, A. A. (2013). Parabolic problems and interpolation with a function parameter. Methods Funct. Anal. Topol., 19, No. 2, pp. 146-160.
Los, V. M. (2015). Mixed problems for the two-dimensional heat-conduction equation in anisotropic Hörmander spaces. Ukr. Math. J., 67, No. 5, pp. 735-747. doi: https://doi.org/10.1007/s11253-015-1111-3
Los, V., Mikhailets, V. A. & Murach, A. A. (2017). An isomorphism theorem for parabolic problems in Hörmander spaces and its applications. Commun. Pur. Appl. Anal., 16, No. 1. pp. 69-97. doi: https:// doi.org/10.3934/cpaa.2017003
Los, V. & Murach, A. (2017). Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces. Open Mathematics, 15, pp. 57-76. doi: https://doi.org/10.1515/math-2017-0008
Los, V. M. & Murach, A. A. (2014). Parabolic mixed problems in spaces of generalized smoothness. Dopov. Nac. akad. nauk. Ukr., No. 6, pp. 23-31 (in Russian). doi: https://doi.org/10.15407/dopovidi2014.06.023
Los, V. M. (2016). Anisotropic Hörmander spaces on the lateral surface of a cylinder. J. Math. Sci., 217, No. 4. pp. 456-467. doi: https://doi.org/10.1007/s10958-016-2985-9
Volevich, L. R. & Paneah, B. P. (1965). Certain spaces of generalized functions and embedding theorems. Russ. Math. Surv., 20, No. 1. pp. 1-73. doi: https://doi.org/10.1070/RM1965v020n01ABEH004139
Seneta, E. (1976). Regularly varying functions. Lecture notes in mathematics, vol. 508. Berlin: Springer. doi: https://doi.org/10.1007/BFb0079658
Mikhailets, V. A. & Murach, A. A. (2008). Interpolation with a function parameter and refined scale of spaces. Methods Funct. Anal. Topol., 14, No. 1, pp. 81-100.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.