Electron impact ionization of tellurium in the gas phase

Authors

  • O.B. Shpenik Institute of Electronic Physics of the NAS of Ukraine, Uzhhorod
  • A.M. Zavilopulo Institute of Electronic Physics of the NAS of Ukraine, Uzhhorod
  • O.V. Pylypchynets Institute of Electronic Physics of the NAS of Ukraine, Uzhhorod

DOI:

https://doi.org/10.15407/dopovidi2018.05.044

Keywords:

electron impact, energy of appearance, ionization, tellurium

Abstract

The processes of ionization of tellurium in the gas phase by the electron impact have been studied by mass spectrometry, by using the technique of intersecting beams. The mass spectra of tellurium are studied in the range of mass numbers 50—350 Da at various energies of ionizing electrons from 6 to 70 eV and in the temperature range 400—600 K. The mass spectrum consists of three groups of peaks corresponding to atomic Te+, molecular Te2+, and doubly charged Te2+ ions. It is shown that the ratio of the intensity of isotope peaks to the main one is conserved for both atomic and molecular ions. It is found that diatomic tellurium molecules prevail in the gas phase at experimental temperatures. The ionization functions of Te+, Te2+, and Te2+ ions and the energies of appearance and ionization of molecular and atomic tellurium ions are determined by the method of least squares over the threshold sections of the curves. For the first time in the mass spectra of tellurium, a doubly charged Te2+ ion is found, for which the energy dependence of the ionization by the electron impact is obtained, and the ionization energy E = 20.6 ± 0.25 eV is determined.

Downloads

Download data is not yet available.

References

Topouzkhanian, A., Wellegehausen, B., Effantin, C., D'incan, J. & Verges, J. (1983). New Continuous Laser Emissions in Te2, Laser Chem., 1, No. 5, pp. 195-209. doi: https://doi.org/10.1155/LC.1.195

Willey, K. F., Cheng, P. Y., Taylor, T. G., Bishop, M. B. & Duncan, M. A. (1990). Photoionization and Mass-Selected Photodlssociation of Tellurium Clusters. J. Phys. Chem., 94, No. 4, rr.1545-1549. doi: https://doi.org/10.1021/j100367a061

Hearley, Andrew K., Johnson, Brian F.G., McIndoe, J. Scott & Tuck, Dennis G. (2002). Mass spectrometric identification of singly-charged anionic and cationic sulfur, selenium, tellurium and phosphorus species produced by laser ablation. Inorganica Chimica Acta, 334, rr. 105-112. doi: https://doi.org/10.1016/S0020-1693(02)00738-7

Albeck, Michael & Shaik, Sason. (1975). Identification of Telurium-Containing Compounds by Means of Mass Spectrometry. J. of Organometalk Chem., 91, pp. 307-313. doi: https://doi.org/10.1016/S0022-328X(00)88997-4

Snodgrass, J. T., Coe, J. V., McHugh, K. M., Freidhoff, C. B. & Bowen, K. H. (1989). Photoelectron Spectroscopy of Selenium- and Tellurium-Containing Negative Ions: Se0, Se, and Te. J. Phys. Chem., 93, pp. 1249-1254. doi: https://doi.org/10.1021/j100341a016

Viswanathan, R., Balasubramanian, R., Raj, D. Darwin, Albert, Baba, M. Sai & Narasimhan, T.S. Lakshmi. (2014). Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry. J. Alloys and Compounds, 603, pp. 75-85. doi: https://doi.org/10.1016/j.jallcom.2014.03.040

Kukhta, A. V., Kukhta, I. N., Zavilopulo, A. N., Agafonova, A. S. & Shpenik, O. B. (2009). Ionization of 4,4'-bis(phenylethynyl)- anthracene by electron impact. Eur. J. Mass Spectrom., 15. pp. 563-570. doi: https://doi.org/10.1255/ejms.1018

NIST Standard Reference Database. (http://www.webbook.nist.gov)

Shpenik, O. B., Erdevdy, M. M., Markush, P. P., Kontros, J. E. & Chernyshova, I. V. (2015). Electron Impact Excitation and Ionization of Sulfur, Selenium, and Tellurium Vapors. Ukr. J. Phys., 60, No. 3, pp. 217-223. doi: https://doi.org/10.15407/ujpe60.03.0217

Freund, Robert S., Wetzel, Robert C., Shul, Randy J. & Hayes, Todd R. (1990). Cross-section measurements for electron-impact ionization of atoms. Phys. Rev. A., 41, pp. 3575-3590. doi: https://doi.org/10.1103/PhysRevA.41.3575

Zavilopulo, A. N., Markush, P. P., Shpenik, O. B. & Mykyta, M. I. (2014). Electron Impact Ionization and Dissociative Ionization of Sulfur in the Gas Phase. Technical Physics., 59. No. 7. pp. 951-958. doi: https://doi.org/10.1134/S1063784214070299

Zavilopulo, A. N., Shpenik, O. B. & Mylymko, A. M. (2017), Examination of a Molecular Se Beam by Mass Spectrometry with Electron Ionization. Technical Phys., 62, No. 3, pp. 359-364. doi: https://doi.org/10.1134/S106378421703029X

McFarlane, J. & LeBlanc, J.C. (1996) Fission-Product Tellurium and Cesium Telluride Chemistry Revisited. Whiteshell Laboratories Pinawa, Manitoba ROE 1L0 AECL-11333. COG-95-276-I. P.51.

Franklin, J.L. & Dillard, J.G. (1969). Ionization Potentials, Appearance Potentials, and Heats of Formation of Gaseous Positive Ions. 223-224, 228-229. doi: https://doi.org/10.6028/NBS.NSRDS.26

Moore, C. E. (1970). Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra.

Published

15.05.2024

How to Cite

Shpenik, O., Zavilopulo, A., & Pylypchynets, O. (2024). Electron impact ionization of tellurium in the gas phase . Reports of the National Academy of Sciences of Ukraine, (5), 44–52. https://doi.org/10.15407/dopovidi2018.05.044