Локальна втрата стійкості покриття тонкоплівкової системи під дією стиску вздовж міжфазної тріщини за різних умов контакту

Автор(и)

DOI:

https://doi.org/10.15407/dopovidi2025.06.074

Ключові слова:

тонка плівка, матеріали з покриттям, міжфазна тріщина, гіперпружний матеріал, критичні деформації

Анотація

У межах тривимірної лінеаризованої теорії стійкості деформівних тіл досліджено вплив послаблення зв’язку між компонентами кусково-однорідного напівобмеженого тіла (тонкоплівкова система, матеріал з покриттям) на значення критичних параметрів втрати стійкості під дією стиску такого тіла вздовж міжфазної тріщини. З цією метою на межі поділу середовищ поза тріщиною розглядаються два типи контакту, які моделюють, відповідно, «найсильніший» та «найслабший» тип зв’язку – жорстке з’єднання та гладке проковзування. Указані критичні параметри визначені в результаті розв’язання задач на власні значення для інтегральних рівнянь Фредгольма першого роду (або їх систем), до яких зводяться вихідні граничні задачі. У випадку достатньо довгих по відношенню до товщини покриття тріщин визначено межі застосовності наближеної формули для критичних деформацій, що відповідають локальній втраті стійкості покриття в області над тріщиною.

Завантаження

Дані завантаження ще не доступні.

Посилання

Biot, M. A. (1965). Mechanics of incremental deformations. New York: John Wiley & Sons. 504 p.

Schultheisz, C. R. & Waas, A. M. (1996). Compressive failure of composites, part I: Testing and micromechanical theories. Prog. Aerosp. Sci., 32, No. 1, pp. 1-42. https://doi.org/10.1016/0376-0421(94)00002-3

Waas, A. M. & Schultheisz, C. R. (1996). Compressive failure of composites, part II: Experimental studies. Prog. Aerosp. Sci., 32, No. 1, pp. 43-78. https://doi.org/10.1016/0376-0421(94)00003-4

Guz, A. N. (2008). Fundamentals of the fracture mechanics of compressed composites. Kyiv: Litera (in Russian).

Mei, H., Landis, C. M. & Huang, R. (2011). Concomitant wrinkling and buckle-delamination of elastic thin films on compliant substrates. Mech. Mater., 43, pp. 627-642.

Nikravesh, S., Ryu, D. & Shen, Y.-L. (2020). Instabilities of thin films on a compliant substrate: Direct numerical si- mulations from surface wrinkling to global buckling. Sci. Rep., 10, 5728. https://doi.org/10.1038/s41598-020-62600-z

Kipnis, A. L. (2025). Wrinkling of hyperelastic thin film on hyperelastic semibounded substrate in cases of rigid connection and frictionless sliding of components. J. Elast., 157, 40. https://doi.org/10.1007/s10659-025-10130-y

Yu, H.-H. & Hutchinson, J. W. (2002). Influence of substrate compliance on buckling delamination of thin films. Int. J. Fract., 113, pp. 39-55. https://doi.org/10.1023/A:1013790232359

Gu, P. & Chen, X. (2022). Role of an interface crack for the blistering mode of a stiff film on a compliant subst- rate. J. Coat. Technol. Res, 19, pp. 661-669. https://doi.org/10.1007/s11998-021-00556-z

Cotterell, B. & Chen, Z. (2000). Buckling and cracking of thin film on compliant substrates under compression. Int. J. Fract., 104, pp. 169-179. https://doi.org/10.1023/A:1007628800620

Bogdanov, V., Dovzhyk, M. & Nazarenko, V. (2024). Analysis of the beam approximation applicability in problems on compression of bodies along closely spaced cracks. In: Altenbach, H., Bogdanov, V., Grigorenko, A. Y., Kush- nir, R. M., Nazarenko, V. M. & Eremeyev, V. A. (eds.). Selected problems of solid mechanics and solving methods. Advanced Structured Materials, vol. 204 (pp. 59-80). Cham: Springer. https://doi.org/10.1007/978-3-031-54063-9_5

Cao, Y., Jiang, Y., Li, B. & Feng, X. (2012). Biomechanical modeling of surface wrinkling of soft tissues with growth-dependent mechanical properties. Acta Mech. Solida Sin., 25, pp. 483-492. https://doi.org/10.1016/ S0894-9166(12)60043-3

Stewart, P. S., Waters, S. L., Sayed, T. E., Vella, D. & Goriely, A. (2016). Wrinkling, creasing, and folding in fiber- reinforced soft tissues. Extreme Mech. Lett., 8, pp. 22-29. https://doi.org/10.1016/j.eml.2015.10.005

Dimmock, R. L., Wang, X., Fu, Y., Haj, A. J. L. & Yang, Y. (202). Biomedical applications of wrinkling polymers. Recent Prog. Mater., 2, No. 1, 005. https://doi.org/10.21926/rpm.2001005

Dowson, D. (2012). Bio-tribology. Faraday Discuss., 156, pp. 9-30. https://doi.org/10.1039/c2fd20103h

Dunn, A. C., Tichy, J. A., Urueña, J. M. & Sawyer, W. G. (2013). Lubrication regimes in contact lens wear during a blink. Tribol. Int, 63, pp. 45-50. https://doi.org/10.1016/j.triboint.2013.01.008

Bereznick, D. E., Ross, J. K. & McGil, S. M. (2002). The frictional properties at the thoracic skin-fascia interface: implications in spine manipulation. Clin. Biomech., 17, No. 4, pp. 297-303. https://doi.org/10.1016/s0021- 9290(02)00014-3

Guz, A. N. (1999). Fundamentals of the three-dimensional theory of stability of deformable bodies. Berlin, Heidelberg, New York: Springer. https://doi.org/10.1007/978-3-540-69633-9

Guz, A. N. (2014). Establishing the foundations of the mechanics of fracture of materials compressed along cracks (review). Int. Appl. Mech., 50, No. 1, pp. 1-57. https://doi.org/10.1007/s10778-014-0609-y

Guz, A. N., Bogdanov, V. L. & Nazarenko, V. M. (2020). Two-dimensional problems on the fracture of bodies under compression along cracks. In: Guz, A. N., Bogdanov, V. L. & Nazarenko, V. M. (eds.). Fracture of materials under compression along cracks (pp. 149-248). Cham: Springer. https://doi.org/10.1007/978-3-030-51814-1_3

Bogdanov, V.L., Nazarenko, V.M. & Kipnis, O.L. (2024). Compression of semibounded body with thin coating layer along interface near-surface crack. Part I. Int. Appl. Mech., 60, No. 5, pp. 511-524. https://doi.org/10.1007/ s10778-025-01303-2

Bogdanov, V. L., Nazarenko, V. M. & Kipnis, O. L. (2024). Compression of semibounded body with thin coating layer along interface near-surface crack. Part II. Int. Appl. Mech., 60, No. 6, pp. 641-652. https://doi.org/10.1007/ s10778-025-01316-x

Kipnis, A. L. (2025). Stability of a piecewise-homogeneous half-plane with sliding components under compression along an interface crack. Mech. Compos. Mater., 61, No. 2, pp. 409-424. https://doi.org/10.1007/s11029-025-10283-w

Mikhlin, S. G. (1964). Variational methods in mathematical physics. Oxford: Pergamon Press.

Bartenev, G. M. & Khazanovich, T. N. (1960). On the law of highly elastic deformations of network polymers. Vysokomolekulyarnyye Soyedineniya, 2, No. 1, pp. 21-28 (in Russian).

John, F. (1960). Plane strain problems for a perfectly elastic material of harmonic type. Commun. Pure Appl. Math., 13, No. 2, pp. 239-296. https://doi.org/10.1002/cpa.3160130206

##submission.downloads##

Опубліковано

30.12.2025

Як цитувати

Кіпніс, О. (2025). Локальна втрата стійкості покриття тонкоплівкової системи під дією стиску вздовж міжфазної тріщини за різних умов контакту. Reports of the National Academy of Sciences of Ukraine, (6), 74–84. https://doi.org/10.15407/dopovidi2025.06.074