Changes in the levels of vitamin D receptor and active form of the nuclear factor κB in bone tissue of rats with experimental type 1 diabetes mellitus and their correction with cholecalciferol
DOI:
https://doi.org/10.15407/dopovidi2018.02.109Keywords:
nuclear factor-κB, osteoporosis, type 1 diabetes mellitus, vitamin D receptor, vitamin D3 (cholecalciferol)Abstract
It has been shown that chronic hyperglycemia, caused by the development of experimental type 1 diabetes mellitus (DM 1), leads to a significant decrease in the blood serum level of 25OHD. Vitamin D3 deficiency in rats with DM 1 is accompanied by the impaired signaling of calcitriol in bone tissue, as is evident from a decrease in the expression of the vitamin D3 receptor protein (VDR). The elevated level of nuclear factor κB (NF-κB) subunit p65 phosphorylated at Ser 311 in bone tissue is found. This may contribute to an increase in osteoclastogenesis. Supplementation of cholcalciferol (vitamin D3) to rats with DM 1 leads to a normalization of 25OHD in blood serum, which can result in the restoration of the osteoblastic-osteoclastic balance in bone tissue.
Downloads
References
Cooper, J. D., Smyth, D. J, Walker, N. M, Stevens, H., Burren, O. S, Wallace, C., Greissl, C., Ramos-Lopez, E., Hyppönen, E., Dunger, D. B., Spector, T. D., Ouwehand, W. H., Wang, T. J., Badenhoop, K. & Todd, J. A. (2011). Inherited variation in vitamin D genes is associated with predisposition to autoimmune disease type 1 diabetes. Diabetes. No. 5, rr. 1624-1631. doi: https://doi.org/10.2337/db10-1656
Poudyal, H. & Brown, L. (2013). Osteoporosis and its association with non-gonadal hormones involved in hypertension, adiposityand hyperglycaemia. Curr. Drug. Targets. No. 14, pp. 1694-1706. doi: https://doi.org/10.2174/1389450119999990001
Saccone, D., Asan,i F. & Bornman, L. (2015). Regulation of the vitamin D receptor gene by environment, genetics and epigenetics. Gene, No. 2, pp. 171-180. doi: https://doi.org/10.1016/j.gene.2015.02.024
Lin, Z., Chen, H., Belorusova, A. Y., Bollinger, J. C., Tang, E. K. Y., Janjetovic, Z., Kim, T., Wu, Z., Miller, D. D., Slominski, A. T., Postlethwaite, A. E., Tuckey, R. C., Rochel, N. & Li, W. (2017). 1α,20S-Dihy droxyvitamin D3 interacts with vitamin D receptor: Crystal structure and route of chemical synthesis. Sci Rep., No. 1, pp. 1-10. doi: https://doi.org/10.1038/s41598-017-10917-7
Tai, K., Need, A. G., Horowitz, M. & Chapman, I. M. (2008). Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition., No. 24, pp. 279-285. doi: https://doi.org/10.1016/j.nut.2007.11.006
Dhaon, P. & Shah, V. N. (2014). Type 1 diabetes and osteoporosis: A review of literature. Indian J. Endocrinol. Metab., No. 18, pp. 159-165. doi: https://doi.org/10.4103/2230-8210.129105
Coe, L. M., Irwin, R., Lippner, D. & McCabe, L. R. (2011). The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J. Cell. Physiol., No. 2, pp. 477-483. doi: https://doi.org/10.1002/jcp.22357
Romeo, G., Liu, W. H., Asnaghi, V., Kern, T. S. & Lorenzi, M. (2002). Activation of nuclear factor-κB induced by diabetes and high glucose regulates a proapoptotic program in retinal pericytes. Diabetes, No. 7, pp. 2241-2248. doi: https://doi.org/10.2337/diabetes.51.7.2241
Abu-Amer, Y. (2013). NF-κB signaling and bone resorption. Osteoporos. Int., No. 9, pp. 2377-2386. doi: https://doi.org/10.1007/s00198-013-2313-x
Riccio, P., Rossano, R., Larocca, M., Trotta, V., Mennella, I. & Vitaglione, P. (2016). Anti-inflammatory nutritional intervention in patients with relapsing-remitting and primary-progressive multiple sclerosis: A pilot study. Exp. Biol. Med. (Maywood), No. 6, pp. 620-635. doi: https://doi.org/10.1177/1535370215618462
Mazanova, A. O. Shymanskyy, I. O. & Veliky, M.M. (2016). Development and validation of immunoenzyme test-system for determination of 25-hydroxyvitamin D in blood serum. Biotechnol. Acta., No. 2, pp. 28-36. doi: https://doi.org/10.15407/biotech9.02.028
Wang, Y., Zhu, J. & Deluca, H. F. (2014). Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J. Bone. Miner. Res., No. 3, pp. 685-692. doi: https://doi.org/10.1002/jbmr.2081
Mutt, S. J., Karhu, T., Lehtonen, S., Lehenkari, P., Carlberg, C., Saarnio, J., Sebert, S., Hyppönen, E., Järve lin, M. R. & Herzig, K. H. (2012). Inhibition of cytokine secretion from adipocytes by 1,25-dihydroxyvitamin D3 via the NF-κB pathway. FASEB J., No. 11, pp. 4400-4407. doi: https://doi.org/10.1096/fj.12-210880
Brendan, F. B., Zhenqiang, Y. & Lianping, X. (2010). Functions of NF-κB in Bone. Ann. N. Y. Acad. Sci., No. 1192, pp. 367-375. doi: https://doi.org/10.1111/j.1749-6632.2009.05315.x
Moscat, J. & Diaz-Meco, M. T. (2011) Fine tuning NF-κB: new openings for PKC-ζ. Nat. Immunol., No. 1, pp. 12-14. doi: https://doi.org/10.1038/ni0111-12
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.