Inhibition of the corrosion of an aluminum alloy by products of microbiological synthesis

Authors

  • I.M. Zin Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
  • S.A. Korniy Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
  • O.V. Karpenko Lviv Department of Lytvynenko Institute of Physico-Organic Chemistry and Coal Chemistry of the NAS of Ukraine, Lviv
  • M.B. Tymus Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
  • O.P. Khlopyk Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv
  • V.I. Pokhmurskii Karpenko Physico-Mechanical Institute of the NAS of Ukraine, Lviv

DOI:

https://doi.org/10.15407/dopovidi2018.02.093

Keywords:

aluminum alloy, biosurfactant, corrosion and electrochemical studies, electronic structure, inhibitor, rhamnolipid

Abstract

The surface-active product of the Pseudomonas sp. PS-17 strain biosynthesis (ramnolipid biocomplex) can provide the effective corrosion inhibition of the mechanically activated surface of aluminum alloys in a synthetic acid rain. The efficiency of the inhibition becomes stronger with increasing the biosurfactant concentration. However, above the critical micelle concentration (CCM), the further improvement in the inhibition is minor. The mechanism of corrosion inhibition consists in the adsorption of biosurfactant molecules on the alloy surface with the formation of a barrier film and in the formation of a low-soluble complex compound by the interaction of rhamnolipids with aluminium ions on anode metal areas. Adding the biosurfactant to the corrosive environment increases the rate of protective film recovery on the aluminum alloy at the repassivation stage by 2 … 4 times as compared with the uninhibited solution.

Downloads

Download data is not yet available.

References

Kesavan, D., Gopiraman, M. & Sulochana N. (2012). Green inhibitors for corrosion of metals: A review. Chem. Sci. Rev. Lett., 1, Iss. 1, pp.1-8.

Rani, B. E. A. & Basu, B. B. J. (2012). Green inhibitors for corrosion protection of metals and alloys: An overview. Int. J. Corros. Arti. ID 380217, 15 p. doi: https://doi.org/10.1155/2012/380217

Savchenko, O. N., Sizaya, O. I. & Gumenyuk, O. L. (2005). Use of modified mustard oil in steel corrosion protection. Prot. Met. Phys. Chem. Surf., 41, No. 6, pp. 573-580. doi: https://doi.org/10.1007/s11124-005-0082-4

Chygyrynets, O. E. & Lipatov, S. Yu. (2013). Investigation of inhibitory properties of aqueous extracts of bone drugs. Ekotehnologiji i resursozberezhenije, No. 6, pp. 38-41 (in Russian).

Slobodyan, Z. V., Mahlatyuk, L. A., Kupovych, R. B. & Khaburs'kyi, Ya. M. (2015). Compositions based on the extracts of oak bark and chips as corrosion inhibitors for mMedium-carbon steels in water. Mat. Sci., 50, No. 5, pp. 687-697. doi: https://doi.org/10.1007/s11003-015-9773-4

Fetouh, H. A., Abdel-Fattah, T. M. & El-Tantawy, M. S. (2014). Novel plant extracts as green corrosion ihibitors for 7075-T6 aluminium alloy in an aqueous medium. Int. J. Electrochem. Sci., No. 9, pp. 1565-1582.

Malik, M. A., Hashim, M. A., Nabi, F., AL-Thabaiti, S. A. & Khan Z. (2011). Anti-corrosion ability of sur factants: A review. Int. J., Electrochem. Sci., 6, pp. 1927-1948.

Monticelli, C., Brunoro, G., Frignani, A. & Zucchi, F. (1991). Surface-active substances as inhibitors of localized corrosion of the aluminium alloy AA 6351. Corros. Sci., 32, No. 7, pp. 693-705. doi: https://doi.org/10.1016/0010-938X(91)90084-3

Karpenko, O. V., Shulga, A. N. & Turovskii, A. A. (1996). Poverchnostno-aktivnyje sojedinenija kultury Pseudomonas species PS-17. Mikrobiol. Zhur., 58, No. 5, pp. 18-24 (in Russian).

Pat. 71792A UA, IPC S12 N 1/02, C12 R 1/38, Surface active biopreparate, Karpenko, O.V., Martyniuk, N.V., Shulga, O.M., Pokynbroda, T.Ya., Vildanova, R.I., Shczeglova, N.S., Publ. 15.12.2004 (in Ukrainian).

Pokhmurs'kyi, V. I., Karpenko, O. V., Zin, I. M., Tymus', M. B. & Veselivs'ka, H. H. (2014). Inhibiting action of biogenic surfactants in corrosive media. Mat. Sci., 50, No. 3, pp. 448-453. doi: https://doi.org/10.1007/s11003-014-9741-4

Pat. 81047 UA, IPC C23F 11/00, C23F 11/00, G01N 17/00, G01N 17/00, Method of express evaluation of the effectiveness of corrosion inhibitors in the conditions of mechanical destruction of a passive film on the metal surface, Pokhmurskii, V.I., Zin, I.M., Kondyr, A.I., Hklopyk, O.P., Publ. 25.06.2013 (in Ukrainian).

Neese, F. (2012). The ORCA program system. Comput. Mol. Sci., 2, Iss. 1, pp. 73-78. doi: https://doi.org/10.1002/wcms.81

Lu, B. T., Luo, J. L., Mohammadi, F., Wang, K. & Wan, X. M. (2008). Correlation between repassivation kinetics and corrosion rate over a passive surface in flowing slurry. Electrochim. Acta, 53, No. 23, pp. 7022-7031. doi: https://doi.org/10.1016/j.electacta.2008.02.083

Yin, Y., Liu, T., Chen, S., Liu, T. & Cheng, S. (2008). Structure stability and corrosion inhibition of superhydrophobic film on aluminum in seawater. Appl. Surf. Sci., 255, No. 6, pp. 2978-2984. doi: https://doi.org/10.1016/j.apsusc.2008.08.088

Published

09.05.2024

How to Cite

Zin, I., Korniy, S., Karpenko, O., Tymus, M., Khlopyk, O., & Pokhmurskii, V. (2024). Inhibition of the corrosion of an aluminum alloy by products of microbiological synthesis . Reports of the National Academy of Sciences of Ukraine, (2), 93–101. https://doi.org/10.15407/dopovidi2018.02.093