Guanidinium-containing oligomeric cationic protonic ionic liquid

Authors

  • M.Ya. Vortman Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
  • V.N. Lemeshko Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
  • V.V. Shevchenko Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.12.075

Keywords:

guanidinium-containing oligomeric ionic liquid, ionic liquids, proton cationic oligomeric ionic liquid

Abstract

By the reaction of oligomeric oxyalkyl aromatic diepoxide with guanidine, followed by the neutralization of the product with hydrochloric acid, a new type of reactive proton cationic oligomeric ionic liquids is synthesized. Its structure is characterized by the presence of guanidinium groups at the ends of the hydrophobic alkylaromatic hydroxyl-containing oligoether chain. The chemical structure of this compound was characterized by IR, 1H and 13C NMR spectroscopy, and its molecular weight characteristics were determined. The synthesized proton oligomeric ionic liquid is characterized by an amorphous structure with a glass transition temperature of 70 ºC. The proton conductivity of this compound is 1.94 • 10–3 S/cm at 120 ºC, and, in terms of surface activity, it is at the level of classical surfactants. The synthesized oligomeric ionic liquid is of interest as an electrolyte operating under fresh conditions, a fungicide, a surfactant, as well as a starting reagent for the synthesis of ion-containing block copolymers.

Downloads

Download data is not yet available.

References

Hallett, J. P. & Welton, T. (2011). Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 111, No. 5, pp. 3508-3576. Doi: https://doi.org/10.1021/cr1003248

Greaves, T. L. & Drummond, C. J. (2008). Protic ionic liquids: properties and applications. Chem. Rev., 108, No. 1, pp. 206-237. Doi: https://doi.org/10.1021/cr068040u

Bideau, J. L., Viau, L. & Vioux, A. (2011). Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev., 40, No. 2, pp. 907-925. Doi: https://doi.org/10.1039/C0CS00059K

Vointseva, I. I. & Gembitsky, P. A. (2009). Polyguanidines — disinfectants and multifunctional additives in composite materials. Moscow: LKM-press (in Russian).

Bogdanov, M. G., Petkova, D., Hristeva, S., Svinyarov, I. & Kantlehner, W. (2010). New guanidinium-based room–temperature ionic liquids. Substituent and anion effect on density and solubility in water. Z. Naturforsch. B, 65. Iss. 1, pp. 37-48. Doi: https://doi.org/10.1515/znb-2010-0108

Zhao, Z., Ueno, K. & Angell, C. A. (2011). High conductivity, and “dry” proton motion, in guanidinium salt melts and binary solutions. J. Phys. Chem. B, 115, No. 46, pp. 13467-13472. Doi: https://doi.org/10.1021/jp206491z

Tanaka, M., Siehl, H. U., Viefhaus, T., Frey, W. & Kantlehner, W. (2009). An ONIOM study of a guanidinium salt ionic liquid. Experimentaly and computational characterization of N,N,N',N',N"-Pentabutyl-N"-benzylguanidinium Bromide. Z. Naturforsch. B, 64, Iss. 6, pp. 765-772. Doi: https://doi.org/10.1515/znb-2009-0624

Zhang, P., Liu, Y., Fan, M. & Jiang, P. (2016). Catalytic performance of a novel amphiphilic alkaline ionic liquid for biodiesel production: Influence of basicity and conductivity. Renew. Energ., 86, pp. 99-105. Doi: https://doi.org/10.1016/j.renene.2015.08.008

Zhang, C., Ying, Z., Luo, Q., Du, H., Wang, Y., Zhang, K., Yan, S., Li, X., Shen, Z. & Zhu, W. (2017). Poly(hexamethylene guanidine)-based hydrogels with long lasting antimicrobial activity and low toxicity. J. Polym. Sci. Pt A: Polym. Chem., 55, No. 12, pp. 2027–2035. Doi: https://doi.org/10.1002/pola.28581

Mecerreyes, D. (2011). Polymeric ionic liquids: Broadening the properties and application of polyelectrolytes. Prog. Polym. Sci., No. 36, Iss. 12, pp. 1629-1648. Doi: https://doi.org/10.1016/j.progpolymsci.2011.05.007

Green, O., Grubjesic, S., Lee, S. & Firestone, M. A. (2009). The design of polymeric ionic liquids for the preparation of functional materials. Polym. Rev., 49, Iss. 4, pp. 339-360. Doi: https://doi.org/10.1080/15583720903291116

Ito, K., Nishina, N. & Ohno, H. (1997). High lithium ionic conductivity of poly(ethylene oxide)s having sulfonate groups on their chain ends. J. Mater. Chem., 7, No. 8, pp. 1357-1362. Doi: https://doi.org/10.1039/a700583k

Shevchenko, V. V., Stryutsky, A. V., Klymenko, N. S., Gumenna, M. A., Fomenko, A. A., Bliznyuk, V. N., Trachevsky, V. V., Davydenko, V. V. & Tsukruk, V. V. (2014). Protic and aprotic anionic oligomeric ionic liquids. Polymer, 55, Iss. 16, pp. 3349-3359. Doi: https://doi.org/10.1016/j.polymer.2014.04.020

Shevchenko, V. V., Gumennaya, M. A., Stryutsky, A. V., Klimenko, N. S., Trachevskii, V. V., Klepko, V. V. & Davidenko, V. V. (2018). Reactive oligomeric protic cationic linear ionic liquids with different types of nitrogen centers. Polym. Sci., Ser. B., 60, No. 5, pp. 598-611. Doi: https://doi.org/10.1134/S1560090418050160

Shevchenko, V. V., Shrubovich, V. A. & Protasova, N. V. (1991). The structure and surface-active properties of oligourethanesemicarbazides. Kompozitsionnyie Polimernyie Materialyi, 50, pp. 15-19 (in Russian).

Published

24.04.2024

How to Cite

Vortman, M., Lemeshko, V., & Shevchenko, V. (2024). Guanidinium-containing oligomeric cationic protonic ionic liquid . Reports of the National Academy of Sciences of Ukraine, (12), 75–82. https://doi.org/10.15407/dopovidi2019.12.075

Most read articles by the same author(s)