Quasimomentum of an elementary excitation for a system of point bosons under zero boundary conditions
DOI:
https://doi.org/10.15407/dopovidi2019.12.049Keywords:
elementary excitation, point bosons, quasimomentum, zero boundary conditionsAbstract
As is known, an elementary excitation of a many-particle system with boundaries is not characterized by a definite momentum. We obtain the formula for the quasimomentum of an elementary excitation for a one-dimensional system of N spinless point bosons under zero boundary conditions (BCs). In this case, we use Gaudin's solutions obtained with the help of the Bethe ansatz. We have also found the dispersion laws of the particle-like and hole-like excita tions under zero BCs. They coincide with the known dispersion laws obtained under periodic BCs.
Downloads
References
Girardeau, M. (1960). Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. (N.Y.), 1, Iss. 6, pp. 516-523. Doi: https://doi.org/10.1063/1.1703687
Lieb, E. H. & Liniger, W. (1963). Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev., 130, Iss. 4, pp. 1605-1616. Doi: https://doi.org/10.1103/PhysRev.130.1605
Lieb, E. H. (1963). Exact analysis of an interacting Bose gas. II. The excitation spectrum. Phys. Rev., 130, Iss. 4, pp. 1616-1624. Doi: https://doi.org/10.1103/PhysRev.130.1616
Yang, C. N. & Yang, C. P. (1969). Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. (N.Y.), 10, Iss. 7, pp. 1115-1122. Doi: https://doi.org/10.1063/1.1664947
Gaudin, M. (1971). Boundary energy of a Bose gas in one dimension. Phys. Rev. A, 4, Iss. 1, pp. 386-394. Doi: https://doi.org/10.1103/PhysRevA.4.386
Takahashi, M. (1999). Thermodynamics of One-Dimensional Solvable Models. Cambridge: Cambridge Univ. Press. Doi: https://doi.org/10.1017/CBO9780511524332
Tomchenko, M. (2015). Point bosons in a one-dimensional box: the ground state, excitations and thermodynamics. J. Phys. A: Math. Theor., 48, No. 36, 365003. Doi: https://doi.org/10.1088/1751-8113/48/36/365003
Batchelor, M. T., Bortz, M., Guan X. W. & Oelkers, N. (2006). Collective dispersion relations for the one-dimensional interacting two-component Bose and Fermi gases. J. Stat. Mech., No. 3, P03016. Doi: https://doi.org/10.1088/1742-5468/2006/03/P03016
Lang, G., Hekking, F. & Minguzzi, A. (2017). Ground-state energy and excitation spectrum of the Lieb—Liniger model: accurate analytical results and conjectures about the exact solution. Sci. Post. Phys., 3, Iss. 1, 003. Doi: https://doi.org/10.21468/SciPostPhys.3.1.003
Gu, S.J., Li, Y.Q. & Ying, Z.J. (2001). Trapped interacting two-component bosons in one dimension. J. Phys. A: Math. Gen., 34, No. 42, pp. 8995-9008. Doi: https://doi.org/10.1088/0305-4470/34/42/317
Tomchenko, M. (2017). Uniqueness of the solution of the Gaudin’s equations, which describe a one-dimensional system of point bosons with zero boundary conditions. J. Phys. A: Math. Theor., 50, No. 5, 055203. Doi: https://doi.org/10.1088/1751-8121/aa5197
Tomchenko, M. (2019). Nature of Lieb’s “hole” excitations and two-phonon states of a Bose gas. arXiv: 1905.03712 [cond-mat.quant-gas].
Bogoliubov, N. N. (1947). On the theory of superfluidity. J. Phys. USSR, 11, No. 1, pp. 23-32.
Cazalilla, M. A. (2004). Bosonizing one-dimensional cold atomic gases. J. Phys. B: At. Mol. Opt. Phys., 37, No. 7, pp. S1-S48. Doi: https://doi.org/10.1088/0953-4075/37/7/051
Tomchenko, M. D. (2019). Low-lying energy levels of a one-dimensional weakly interacting Bose gas under zero boundary conditions. Ukr. J. Phys., 64, No. 3, pp. 250-265. Doi: https://doi.org/10.15407/ujpe64.3.250
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.