Sorption purification of mine ralized groundwaters from uranium compounds by pillared clays
DOI:
https://doi.org/10.15407/dopovidi2019.10.082Keywords:
mineralized groundwater, pillar-clays, sorption, uraniumAbstract
The removal of uranium (VI) from mineralized groundwaters by the adsorption onto pillared-bentonites is investigated. Various complexes of U(VI) in mineralized waters are examined. It has been shown that, in mineralized groundwaters, anionic carbonate complexes of U(VI) are selectively removed by samples of pillaredbentonite. Adsorption isotherms are obtained at pH 7.2 and an uranium concentration of 10—100 mg/l. The order of extracting anionic forms of uranium by pillared-bentonites is Ti > Fe > Zr> Al indicating that the Ti-pillared-bentonite form is the most effective in the removal of U(VI) from mineralized groundwaters. The uranium sorption data are fitted by the Langmuir and Freundlich equilibrium models to obtain the characteristic parameters of each model. According to the evaluation using the Langmuir model, the maximum sorption capacity of uranium (VI) ions onto Ti-pillared-bentonite is 36.57 mg/g under the ratio of solid to liquid 500 in 1 h. The results suggest that pillared-bentonites are suitable materials for the preconcentration and solidification of uranium (VI) species from mineralized groundwaters.
Downloads
References
Kornilovych, B. Yu., Sorokin, O. G., Pavlenko, V. M. & Koshyk, Yu. I. (2011). Environmental protection technologies in uranium mining and processing industries. Kyiv: Norma (in Ukrainian).
Torrero, M. E., Casas, I., Pablo, J., Sandino, M. C. A. & Grambow, B. (1994). A comparison between unirradiated UO2(s) and schoepite solubilities in 1 M NaCl medium. Radiochim. Acta, 66/67, pp. 29-35. doi: https://doi.org/10.1524/ract.1994.6667.special-issue.29
Kramer-Schnabel, U., Bischoff, H., Xi, R. H. & Marx, G. (1992). Solubility products and complex formation equilibria in the systems uranyl hydroxide and uranyl carbonate at 25 °C and I = 0.1 M. Radiochim. Acta, 56, pp. 183-188. doi: https://doi.org/10.1524/ract.1992.56.4.183
Meinrath, G., Kato, Y., Kimura, T. & Yoshida, Z. (1996). Solid-aqueous phase equilibria of uranium (VI) under ambient conditions. Radiochim. Acta, 25, pp. 159-167. doi: https://doi.org/10.1524/ract.1996.75.3.159
Shi, Y., He, J., Yang, X., Zhou, W., Wang, J. & Li, X. (2019). Sorption of U(VI) onto natural soil and different mineral compositions: The batch method and spectroscopy analysis. J. Environ. Radioactivity, 203, pp. 163-171. doi: https://doi.org/10.1016/j.jenvrad.2019.03.011
Langmuir, D. (1997). Aqueous environmental geochemistry. Prentice Hall: Upper Saddle River.
Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2014). Sorption of uranium and chromium ions on Zr/Al-pillared montmorillonite. Dopov. Nac. akad. nauk Ukr., No. 9, pp. 97-102 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.09.097
Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2015). Synthesis and sorption properties of Ti- and Tі/Al-pillared montmorillonite. Khimia, fizyka ta tekhnologia poverkhni, 6, No. 3, pp. 336-342 (in Ukrainian). doi: https://doi.org/10.15407/hftp06.03.336
Mnasri-Ghnimi, S. & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci., 179, pp. 1-17. doi: https://doi.org/10.1016/j.clay.2019.105151
Kornilovych, B., Wireman, M., Ubaldini, S., Guglietta, D., Koshik, Yu., Caruso, B. & Kovalchuk, I. (2018). Uranium removal from groundwater by permeable reactive barrier with zero-valent iron and organic carbon mixtures: laboratory and field studies. Metals, 8, Iss. 6, 408, 15 p. doi: https://doi.org/10.3390/met8060408
Fujiwara, K., Yamana, H., Fujii, T., Kawamoto, K., Sasaki, T. & Moriyama, H. (2005). Solubility product of hexavalent uranium hydrous oxide. J. Nucl. Sci. Technol., 42, No. 3, pp. 289-294. doi: https://doi.org/10.1080/18811248.2005.9726392
Altmaier, M., Yalçıntas, E., Gaona, X., Neck, V., Müller, R., Schlieker, M. & Fanghänel, T. (2017). Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn., 114, pp. 2-13. doi: https://doi.org/10.1016/j.jct.2017.05.039
Puigdomènech, I., Colas, E., Glive, M., Campos, I. & Garcia, D. (2014). A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Online Proceedings Library Archive, 1665, pp. 111-116. doi: https://doi.org/10.1557/opl.2014.635
Tombacz, E. & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl. Clay Sci., 34, pp. 105-124. doi: https://doi.org/10.1016/j.clay.2006.05.009
Pecini, E.M. & Avena, M.J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir, 2013, 29, pp. 14926-14934. doi: https://doi.org/10.1021/la403384g
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.