Sorption purification of mine ralized groundwaters from uranium compounds by pillared clays

Authors

  • I.A. Kovalchuk Institute for Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv
  • I.V. Pylypenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • B.Yu. Kornilovych National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • O.E. Bashchak Institute for Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.10.082

Keywords:

mineralized groundwater, pillar-clays, sorption, uranium

Abstract

The removal of uranium (VI) from mineralized groundwaters by the adsorption onto pillared-bentonites is investigated. Various complexes of U(VI) in mineralized waters are examined. It has been shown that, in mineralized groundwaters, anionic carbonate complexes of U(VI) are selectively removed by samples of pillaredbentonite. Adsorption isotherms are obtained at pH 7.2 and an uranium concentration of 10—100 mg/l. The order of extracting anionic forms of uranium by pillared-bentonites is Ti > Fe > Zr> Al indicating that the Ti-pillared-bentonite form is the most effective in the removal of U(VI) from mineralized groundwaters. The uranium sorption data are fitted by the Langmuir and Freundlich equilibrium models to obtain the characteristic parameters of each model. According to the evaluation using the Langmuir model, the maximum sorption capacity of uranium (VI) ions onto Ti-pillared-bentonite is 36.57 mg/g under the ratio of solid to liquid 500 in 1 h. The results suggest that pillared-bentonites are suitable materials for the preconcentration and solidification of uranium (VI) species from mineralized groundwaters.

Downloads

References

Kornilovych, B. Yu., Sorokin, O. G., Pavlenko, V. M. & Koshyk, Yu. I. (2011). Environmental protection technologies in uranium mining and processing industries. Kyiv: Norma (in Ukrainian).

Torrero, M. E., Casas, I., Pablo, J., Sandino, M. C. A. & Grambow, B. (1994). A comparison between unirradiated UO2(s) and schoepite solubilities in 1 M NaCl medium. Radiochim. Acta, 66/67, pp. 29-35. doi: https://doi.org/10.1524/ract.1994.6667.special-issue.29

Kramer-Schnabel, U., Bischoff, H., Xi, R. H. & Marx, G. (1992). Solubility products and complex formation equilibria in the systems uranyl hydroxide and uranyl carbonate at 25 °C and I = 0.1 M. Radiochim. Acta, 56, pp. 183-188. doi: https://doi.org/10.1524/ract.1992.56.4.183

Meinrath, G., Kato, Y., Kimura, T. & Yoshida, Z. (1996). Solid-aqueous phase equilibria of uranium (VI) under ambient conditions. Radiochim. Acta, 25, pp. 159-167. doi: https://doi.org/10.1524/ract.1996.75.3.159

Shi, Y., He, J., Yang, X., Zhou, W., Wang, J. & Li, X. (2019). Sorption of U(VI) onto natural soil and different mineral compositions: The batch method and spectroscopy analysis. J. Environ. Radioactivity, 203, pp. 163-171. doi: https://doi.org/10.1016/j.jenvrad.2019.03.011

Langmuir, D. (1997). Aqueous environmental geochemistry. Prentice Hall: Upper Saddle River.

Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2014). Sorption of uranium and chromium ions on Zr/Al-pillared montmorillonite. Dopov. Nac. akad. nauk Ukr., No. 9, pp. 97-102 (in Ukrainian). doi: https://doi.org/10.15407/dopovidi2014.09.097

Pylypenko, I. V., Kovalchuk, I. A. & Kornilovych, B. Yu. (2015). Synthesis and sorption properties of Ti- and Tі/Al-pillared montmorillonite. Khimia, fizyka ta tekhnologia poverkhni, 6, No. 3, pp. 336-342 (in Ukrainian). doi: https://doi.org/10.15407/hftp06.03.336

Mnasri-Ghnimi, S. & Frini-Srasra, N. (2019). Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays. Appl. Clay Sci., 179, pp. 1-17. doi: https://doi.org/10.1016/j.clay.2019.105151

Kornilovych, B., Wireman, M., Ubaldini, S., Guglietta, D., Koshik, Yu., Caruso, B. & Kovalchuk, I. (2018). Uranium removal from groundwater by permeable reactive barrier with zero-valent iron and organic carbon mixtures: laboratory and field studies. Metals, 8, Iss. 6, 408, 15 p. doi: https://doi.org/10.3390/met8060408

Fujiwara, K., Yamana, H., Fujii, T., Kawamoto, K., Sasaki, T. & Moriyama, H. (2005). Solubility product of hexavalent uranium hydrous oxide. J. Nucl. Sci. Technol., 42, No. 3, pp. 289-294. doi: https://doi.org/10.1080/18811248.2005.9726392

Altmaier, M., Yalçıntas, E., Gaona, X., Neck, V., Müller, R., Schlieker, M. & Fanghänel, T. (2017). Solubility of U(VI) in chloride solutions. I. The stable oxides/hydroxides in NaCl systems, solubility products, hydrolysis constants and SIT coefficients. J. Chem. Thermodyn., 114, pp. 2-13. doi: https://doi.org/10.1016/j.jct.2017.05.039

Puigdomènech, I., Colas, E., Glive, M., Campos, I. & Garcia, D. (2014). A tool to draw chemical equilibrium diagrams using SIT: Applications to geochemical systems and radionuclide solubility. MRS Online Proceedings Library Archive, 1665, pp. 111-116. doi: https://doi.org/10.1557/opl.2014.635

Tombacz, E. & Szekeres, M. (2006). Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl. Clay Sci., 34, pp. 105-124. doi: https://doi.org/10.1016/j.clay.2006.05.009

Pecini, E.M. & Avena, M.J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: The case of montmorillonite. Langmuir, 2013, 29, pp. 14926-14934. doi: https://doi.org/10.1021/la403384g

Published

24.04.2024

How to Cite

Kovalchuk, I., Pylypenko, I., Kornilovych, B., & Bashchak, O. (2024). Sorption purification of mine ralized groundwaters from uranium compounds by pillared clays . Reports of the National Academy of Sciences of Ukraine, (10), 82–88. https://doi.org/10.15407/dopovidi2019.10.082