Influence of a near-electrode layer thickness on the diffusion impedance
DOI:
https://doi.org/10.15407/dopovidi2018.01.034Keywords:
diffusion impedance, impedance spectroscopy, mass transfer, Nernst diffusion layer, oscillatory diffusion layer, phase angleAbstract
It is shown that the impedance of a near-electrode layer increases with the thickness of the Nernst diffusion layer. A qualitative estimation of the phase angle of the diffusion impedance depending on the frequency at different diffusion layer thicknesses is obtained. It is shown that the diffusion is a reason for a delay in the phase of changes in the surface concentration of species with respect to the current.
Downloads
References
Drossbach, P. & Schulz, J. (1964). Elektrochemische untersuchungen an kohleelektroden –I. Die Űberspannung des Wasserstoffs. Electrochim. Acta., 9, pp. 1391-1404. doi: https://doi.org/10.1016/0013-4686(64)85018-0
Franceschetti, D. R., Macdonald, J. R. & Buck, R. P. (1991). Interpretation of finite-length-Warburg-type impedances in supported and unsupported electrochemical cells with kinetically reversible electrodes. J. Electrochem. Soc., 138, No. 5, pp. 1368-1371. doi: https://doi.org/10.1149/1.2085788
Jacobsen, T. & West, K. (1995). Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim. Acta., 40, No. 2, pp. 255-262. doi: https://doi.org/10.1016/0013-4686(94)E0192-3
Bisquert, J. & Compte, A. (2001). Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem., 499, pp. 112-120. doi: https://doi.org/10.1016/S0022-0728(00)00497-6
Gabano, J. D., Poinot, T. & Huard, B. (2017). Bounded diffusion impedance characterization of battery electrodes using fractional modeling. Commun. Nonlinear Sci. Numer. Simul., 47, pp. 164-177. doi: https://doi.org/10.1016/j.cnsns.2016.11.016
Bisquert, J., Garcia-Belmonte, G., Fabregat-Santiago, F. & Bueno, P. R. (1999). Theoretical models for acimpedance of finite diffusion layers exhibiting low frequency dispersion. J. Electroanal. Chem., 475, pp. 152-163. doi: https://doi.org/10.1016/S0022-0728(99)00346-0
Lelidis, I., Macdonald, J. R. & Barbero, G. (2016). Poisson–Nernst–Planck model with Chang-Jaffe, diffusion, and ohmic boundary conditions. J. Phys. D: Appl. Phys., 49, 025503. doi: https://doi.org/10.1088/0022-3727/49/2/025503
Nielsen, J. & Hjelm, J. (2014). Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM: YSZ cathodes. Elecrochim. Acta., 115, pp. 31-45. doi: https://doi.org/10.1016/j.electacta.2013.10.053
Schönleber, M., Uhlmann, C., Braun, P., Weber, A. & Ivers-Tiffée, E. (2017). A consistent derivation of the impedance of a lithium-ion battery electrode and its dependency on the state-of-charge. Electrochim. Acta., 243, pp. 250-259. doi: https://doi.org/10.1016/j.electacta.2017.05.009
Jacobsen, T., Hendriksen, P.V., Koch, S. (2008). Diffusion and convection impedance in solid oxide fuel cells. Electrochim. Acta., 53, pp. 7500-7508. doi: https://doi.org/10.1016/j.electacta.2008.02.019
Vetter, K.J. (1961). Elektrochemische Kinetik. Berlin: Springer. https://doi.org/10.1007/978-3-642-86547-3
Takemori, Y., Kambara, T., Senda, M. & Tachi, I. (1957). Alternating current chronopotentiometry – reversible electrode process. J. Phys. Chem., 61, pp. 968-969. doi: https://doi.org/10.1021/j150553a029
Gorodyskii, A. V., Yudenkova, I. N. & Ischenko, N. A. (1982). Influence of alternative current frequencies on electrochemical polishing of carbon steel. Ukr. khim. zhur., 48, pp. 1105-1107 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.