On a possibility of the blocking of DNA specific recognition sites by hydrogen peroxide molecules during ion beam therapy

Authors

  • O.O. Zdorevskyi Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv
  • D.V. Piatnytskyi Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv
  • S.N. Volkov Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv

DOI:

https://doi.org/10.15407/dopovidi2019.06.082

Keywords:

cancer therapy, DNA nucleic bases, hydrogen peroxide

Abstract

Ion beam therapy is one of the most effective methods in treatment of cancer diseases. But up to nowadays, the mechanism of action of heavy ions on cancer cells has not been determined yet. Study of water fragmentation processes during ion beam therapy shows that, among different oxygen species, the significant amount of hydrogen peroxide molecules (H2O2) occurs in the сell medium. In the present work, the competitive interaction of H2O2 and H2O molecules with specific DNA recognition sites is studied. Interaction energies of complexes consisting of nucleic bases (adenine, thymine, guanine, and cytosine) together with hydrogen peroxide and water molecules are calculated, using the method of atom-atom potential functions and density functional theory. The atomic groups of nuc leic bases that are more energetically favorable to be bound by hydrogen peroxide rather than by water molecule are found. Formation of such complexes can block the process of DNA replication on different stages and can be one of the mechanisms of ion beam action on cancer cells.

Downloads

Download data is not yet available.

References

Bragg, W. H. & Kleeman, R. (1904). LXXIV. On the ionization curves of radium. London, Edinburgh, Dublin. Philos. Mag. J. Sci., 48, No. 8, pp. 726-38. doi: https://doi.org/10.1080/14786440409463246

Solov’yov, A. V., Surdutovich, E., Scifoni, E., Mishustin, I. & Greiner, W. (2009). Physics of ion beam cancer therapy: a multiscale approach. Phys. Rev. E, Stat. Nonlin. Soft Matter. Phys., 79, No. 1, 011909. doi: https://doi.org/10.1103/PhysRevE.79.011909

Krämer, M. & Durante, M. (2010). Ion beam transport calculations and treatment plans in particle therapy. Eur. Phys. J. D, 60, No. 1, pp. 195-202. doi: https://doi.org/10.1140/epjd/e2010-00077-8

Boscolo, D., Krämer, M., Durante, M., Fuss, M. C. & Scifoni, E. (2018). TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets. Chem. Phys. Lett., 698, pp. 11-18. doi: https://doi.org/10.1016/j.cplett.2018.02.051

Piatnytskyi, D. V., Zdorevskyi, O. O., Perepelytsya, S. M. & Volkov, S. N. (2015). Understanding the mechanism of DNA deactivation in ion therapy of cancer cells: hydrogen peroxide action. Eur. Phys. J. D, 69, No. 11, pp. 255. doi: https://doi.org/10.1140/epjd/e2015-60210-9

Zdorevskyi, O. & Volkov, S. N. (2018). Possible scenarios of DNA double-helix unzipping process in singlemolecule manipulation experiments. Eur. Biophys. J., 47, No. 8, pp. 917-24. doi: https://doi.org/10.1007/s00249-018-1313-3

Zhurkin, V. B., Poltev, V. I. & Florent’ev, V. L. (1980). Atom-atomic potential functions for conformational calculations of nucleic acids. Mol. Biol. (Mosk.), 14, No. 5, pp. 1116-30.

Poltev, V. I. & Shulyupina, N. V. (1986). Simulation of interactions between nucleic acid bases by refined atom-atom potential functions. J. Biomol. Struct. Dyn., 3, No. 4, pp. 739-65. doi: https://doi.org/10.1080/07391102.1986.10508459

Moin, S. T., Hofer, T. S., Randolf, B. R. & Rode, B. M. (2012). An ab initio quantum mechanical charge field molecular dynamics simulation of hydrogen peroxide in water. Comput. Theor. Chem., 980, pp. 15-22. doi: https://doi.org/10.1016/j.comptc.2011.11.006

Hingerty, B. E., Ritchie, R. H., Ferrell, T. L. & Turner, J. E. (1985). Dielectric effects in biopolymers: The theory of ionic saturation revisited. Biopolymers, 24, No. 3, pp. 427-439. doi: https://doi.org/10.1002/bip.360240302

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A.D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Laham, A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. & Pople, J. A. (2004). Gaussian 03, Revision C. 02. Wallingford, CT.

Kryachko, E. S. & Volkov, S. N. (2001). Preopening of the DNA base pairs. Int. J. Quantum Chem, 82, No. 4, pp. 193-204. doi: https://doi.org/10.1002/qua.1040

Giudice, E., Várnai, P. & Lavery, R. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res., 31, No. 5, pp. 1434-43. doi: https://doi.org/10.1093/nar/gkg239

Dobado, J. A. & Molina, J. (1999). Adenine-hydrogen peroxide system: DFT and MP2 investigation. J. Phys. Chem. A, 103, No. 24, pp. 4755-61. doi: https://doi.org/10.1021/jp990671n

Seeman, N. C., Rosenberg, J. M. & Rich, A. (1976). Sequence-specific recognition of double helical nucleic acids by proteins. Proc. Natl. Acad. Sci. USA, 73, No. 3, pp. 804-808. doi: https://doi.org/10.1073/pnas.73.3.804

Downloads

Published

21.04.2024

How to Cite

Zdorevskyi, O., Piatnytskyi, D., & Volkov, S. (2024). On a possibility of the blocking of DNA specific recognition sites by hydrogen peroxide molecules during ion beam therapy. Reports of the National Academy of Sciences of Ukraine, (6), 82–89. https://doi.org/10.15407/dopovidi2019.06.082