Phosphorylation of PRAS40 in leukocytes of patients with cancer and diabetes

Authors

  • T.S. Vatseba Ivano-Frankivsk National Medical University
  • L.K. Sokolova V.P. Komissarenko Institute of Endocrinology and Metabolism
  • V.V. Pushkarev V.P. Komissarenko Institute of Endocrinology and Metabolism
  • O.I. Kovzun V.P. Komissarenko Institute of Endocrinology and Metabolism
  • V.M. Pushkarev V.P. Komissarenko Institute of Endocrinology and Metabolism
  • M.D. Tronko V.P. Komissarenko Institute of Endocrinology and Metabolism

DOI:

https://doi.org/10.15407/dopovidi2019.05.102

Keywords:

cancer, mTORC1, PRAS40, type 2 diabetes

Abstract

We have studied the activity of mTORC1 (mammalian target of rapamycin complex 1) in leukocytes of patients with cancer and diabetes by immuno-enzyme analysis. It has been shown that, in the leukocytes of patients with cancer and type 2 diabetes, the phosphorylation of the mTORC1 inhibitor — PRAS40 (proline-rich substrate 40kDa) increases, which indicates the activation of kinase, which plays an important role in the formation of the insulin resistance and tumor progression. However, in patients with cancer and diabetes, the phosphorylation of PRAS40 and, accordingly, the activity of mTORC1 are significantly reduced as compared with the control. The mechanisms of mTORC1 activation and its significance for cancer and diabetes are discussed.

Downloads

Download data is not yet available.

References

Yang, J., Nishihara, R., Zhang, X. et al. (2017). Energy sensing pathways: Bridging type 2 diabetes and colorectal cancer? J. Diabetes Complications., 31, No. 7, pp. 1228-1236. doi: https://doi.org/10.1016/j.jdiacomp.2017.04.012

Wang, H., Zhang, Q., Wen, Q. et al. (2012). Proline-rich Akt substrate of 40kDa (PRAS40): a novel downstream target of PI3k/Akt signaling pathway. Cell Signal., 24, No. 1, pp. 17-24. doi: https://doi.org/10.1016/j.cellsig.2011.08.010

Andersen, J. N., Sathyanarayanan, S., Di Bacco, A. et al. (2010). Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci. Transl. Med., 2, No. 43, 43ra55. doi: https://doi.org/10.1126/scitranslmed.3001065

Wiza, C., Chadt, A., Blumensatt, M. et al. (2014). Over-expression of PRAS40 enhances insulin sensitivity in skeletal muscle. Arch. Physiol. Biochem., 120, No. 2, pp. 64-72. doi: https://doi.org/10.3109/13813455.2014.894076

Oshiro, N., Takahashi, R., Yoshino, K. et al. (2007). The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J. Biol. Chem., 282, No. 28, pp. 20329-20339. doi: https://doi.org/10.1074/jbc.M702636200

Havel, J. J., Li, Z., Cheng, D., Peng, J. & Fu, H. (2014). Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene. doi: https://doi.org/10.1038/onc.2014.91

Wiza, C., Nascimento, E. B. M. & Ouwens, M. D. (2015). AKT1S1 (AKT1 substrate 1 (proline-rich)). Atlas Genet. Cytogenet. Oncol. Haematol., 19, No. 12, pp. 679-683.

Hong-Brown, L. Q., Brown, C. R., Kazi, A. A. et al. (2010). Alcohol and PRAS40 knockdown decrease mTOR activity and protein synthesis via AMPK signaling and changes in mTORC1 interaction. J. Cell. Biochem., 109, No. 6, pp. 1172-1184. doi: https://doi.org/10.1002/jcb.22496

Dituri, F., Mazzocca, A., Giannelli, G. & Antonaci, S. (2011). PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors. Clin. Dev. Immunol., 947858. doi: https://doi.org/10.1155/2011/947858

De Oliveira, C. E., Oda, J. M., Losi Guembarovski, R. et al. (2014). CC chemokine receptor 5: the interface of host immunity and cancer. Dis. Markers., 126954. doi: https://doi.org/10.1155/2014/126954

Pushkarev, V. M., Sokolova, L. K., Pushkarev, V. V. & Tronko, M. D. (2016). The role of AMPK and mTOR in the development of insulin resistance and type 2 diabetes. The mechanism of metformin action (literature review). Probl. Endocrin. Pathol., No. 3, pp. 77-90 (in Russian).

Sokolova, L. K., Pushkarev, V. M., Belchina, Y. B., Pushkarev, V. V. & Tronko, N. D. (2018). Effect of combined treatment with insulin and metformin on 5′AMP-activated protein kinase activity in lymphocytes of diabetic patients. Dopov. Nac. akad. nauk Ukr., No. 5, pp. 100-104. doi: https://doi.org/10.15407/dopovidi2018.05.100

Jiang, N., Hjorth-Jensen, K., Hekmat, O. et al. (2015). In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene, 34, No. 32, pp. 2764-2776. doi: https://doi.org/10.1038/onc.2014.206

Kim, L. C., Cook, R. S. & Chen, J. (2017). mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 36, No. 16, pp. 2191-2201. doi: https://doi.org/10.1038/onc.2016.363

Pushkarev, V. M., Sokolova, L. K., Pushkarev, V. V. & Tronko, M. D. (2018). Biochemical mechanisms connecting diabetes and cancer. Effects of metformin. Endokrynologia, 23, No. 2, pp. 167-179 (in Russian).

Published

21.04.2024

How to Cite

Vatseba, T., Sokolova, L., Pushkarev, V., Kovzun, O., Pushkarev, V., & Tronko, M. (2024). Phosphorylation of PRAS40 in leukocytes of patients with cancer and diabetes . Reports of the National Academy of Sciences of Ukraine, (5), 102–107. https://doi.org/10.15407/dopovidi2019.05.102

Most read articles by the same author(s)

1 2 > >>