Rationality of the growth functions of initial Mealy automata

Authors

  • I.V. Bondarenko Taras Shevchenko National University of Kiev
  • V.M. Skochko Taras Shevchenko National University of Kiev

DOI:

https://doi.org/10.15407/dopovidi2019.03.003

Keywords:

automaton group, growth function, Mealy automaton, polynomial automaton

Abstract

The growth function γA(n) of an initial Mealy automaton A counts the number of states in a composition of automata An = Ao…o A (n times) after the minimization that are reachable from the initial state. We study the question when the generating function of the growth function is rational for the following automata classes: contracting with a nilpotent automaton group, bireversible, and polynomial ones.

Downloads

Download data is not yet available.

References

Grigorchuk, R. I. (1983). On the Milnor problem of group growth. Dokl. AN SSSR, 271, No.1, pp. 30-33.

Bartholdi, L. & Reznykov, I. I. (2008). A Mealy machine with polynomial growth of irrational degree. Int. J. Algebra Comput., 18, No.1, pp. 59-82. doi: https://doi.org/10.1142/S0218196708004287

Bartholdi, L., Reznykov, I. I. & Sushchansky, V. I. (2006). The smallest Mealy automaton of intermediate growth. J. Algebra, 295, No. 2, pp. 387-414. doi: https://doi.org/10.1016/j.jalgebra.2004.08.040

Reznykov, I. I. & Sushchansky, V. I. (2006). On the 3state Mealy automata over an msymbol alphabet of growth order [nlog n/2log m]. J. Algebra, 304, No. 2, pp. 712-754. doi: https://doi.org/10.1016/j.jalgebra. 2006.03.039

Erschler, A. & Zheng, T. (2018). Growth of periodic Grigorchuk groups. arXiv:1802.09077v1 [math. GR] 25 Feb 2018.

Grigorchuk, R. I., Nekrashevych, V. V. & Sushchansky, V. I. (2000). Automata, dynamic systems and groups. Tr. mat. inst. im. V. A. Steklova, 231, pp. 134-214 (in Russian).

Nekrashevych, V. (2005). Selfsimilar groups. Mathematical Surveys and Monographs, Vol. 117. Providence, RI: AMS. doi: https://doi.org/10.1090/surv/117

Bondarenko, I. V., Bondarenko, N. V., Sidki, S. N. & Zapata, F. R. (2013). On the conjugacy problem for finitestate automorphisms of regular rooted trees. With an appendix by Raphaël M. Jungers. Groups Geom. Dyn., 7, Iss. 2, pp. 323-355. doi: https://doi.org/10.4171/GGD/184

Bondarenko, I., D’Angeli, D. & Rodaro, E. (2016). The lamplighter group ¢3 ¢ generated by a bireversible automaton. Commun. Algebra, 44, No. 12, pp. 5257-5268. doi: https://doi.org/10.1080/00927872.2016.1172602

Macedonska, O., Nekrashevych, V. & Sushchansky, V. (2000). Commensurators of groups and reversible automata. Dopov. Nac. acad. nauk Ukr., No. 12, pp. 36-39.

Glasner, Y. & Mozes, S. (2005). Automata and square complexes. Geometriae Dedicata, 111, Iss. 1, pp. 43-64. doi: https://doi.org/10.1007/s1071100418152

Sidki, S. (2000). Automorphisms of onerooted trees: growth, circuit structure, and acyclicity. J. Math. Sci., 100, No. 1, pp. 1925-1943. doi: https://doi.org/10.1007/BF02677504

Gillibert, P. (2018). An automaton group with undecidable order and Engel problems. J. Algebra, 497, pp. 363-392. doi: https://doi.org/10.1016/j.jalgebra.2017.11.049

Published

21.04.2024

How to Cite

Bondarenko, I., & Skochko, V. (2024). Rationality of the growth functions of initial Mealy automata . Reports of the National Academy of Sciences of Ukraine, (3), 3–8. https://doi.org/10.15407/dopovidi2019.03.003