IONIZATION OF FRUCTOSE MOLECULES BY ELECTRON IMPACT
DOI:
https://doi.org/10.15407/dopovidi2024.04.024Keywords:
monosaccharides, fructose, mass spectrum, ionization, electron impact, energy appearance, cross sectionAbstract
The ionization processes of fructose molecules in interaction with electrons were investigated by mass spectrometric method. The ionization potential and total ionization cross section were measured experimentally for the first time. The energy structures of the D- and L-forms of the fructose molecule were calculated using Hartree-Fock (HF) and density functional theory (DFT) methods. The ionization potential of a molecule was estimated from the total energies of the molecule and its positive ion (adiabatic approximation) and from the binding energy of the HOMO molecular orbital (MO). The single ionization cross sections of the molecule were calculated using the semiclassical Binar-Encaunter-Bethe (BEB) and classical Gryzinsky (Gryz) approximations. The measured relative total cross section was normalized to a near-threshold Gryz-DFT value. The contributions to the Gryz-DFT cross section from the valence MOs HOMO, HOMO-1, and HOMO-2 are evaluated.
Downloads
References
Podgorsak, E. B. (2016). Radiation physics for medical physicists. Springer. https://doi.org/10.1007/978-3-319- 25382-4
Inokuti, M. (1995). Atomic and molecular data needed for radiotherapy and radiation research TECDOC-799. Vienna: IAEA Press.
Zavilopulo, A. N., Shpenik, O. B., Mylymko, A. N. & Shpenik, V. Yu. (2019). Mass spectrometry of D-ribose molecules. Int. J. Mass Spectrom., 441, pp. 1-7. https://doi.org/10.1016/j.ijms.2019.03.008
McMurry, J. E. (2010). Fundamentals of organic chemistry. 7th ed. Belmont: Brooks/Cole.
Demes, S., Zavilopulo, A. & Remeta, E. (2023). Ionization of glucose and ribose molecules by electron impact. Eur. Phys. J. D., 77, No. 187. https://doi.org/10.1140/epjd/s10053-023-00766-7
Shpenik, O. B., Zavilopulo, A. N., Agafonova, A. S. & Romanova, L. G. (2008). Mass spectrometry dosage of glucose molecules. Dopov. Naс. acad. nauk Ukr., No. 5, рр. 96-101.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Revision
E.01. Wallingford CT: Gaussian, Inc., 2009.
Shpenik, O., Zavilopulo, A., Remeta, E., Demes, S. & Erdevdy, M. (2020). Іnelastic processes of electron interaction with chalcogens in the gaseous phase. Ukr. J. Phys., 65, No. 7, pp. 557-629. https://doi.org/10.15407/ujpe65.7.557
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics, 4, No. 17. https:// doi.org/10.1186/1758-2946-4-17
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.