STUDY ON THE COMPOSITION AND ANTIOXIDANT PROPERTIES OF EXTRACTS FROM COLOBANTHUS QUITENSIS PLANTS ORIGINATING FROM THE REGIONS OF THE SOUTH SHETLAND ISLANDS, DANCO COAST AND GRAHAM COAST

Authors

DOI:

https://doi.org/10.15407/dopovidi2024.02.025

Keywords:

Colobanthus quitensis, Deschampsia antarctica, plant extracts, culture in vitro, phenolic compounds, antioxidant properties

Abstract

The qualitative and quantitative analysis of secondary metabolites of Colobanthus quitensis plants from the South Shetland Islands, Danco Coast and Graham regions was performed. The composition and antioxidant properties of plant extracts grown in vitro and in nature at different locations on the islands were compared. In addition, the composition and properties of Colobanthus quitensis extracts were compared with those of another Antarctic plant — Deschampsia antarctica. The biochemical composition of the extracts was studied by high-performance liquid chromatography and matrix-assisted laser desorption / ionization mass spectrometry; antioxidant properties were evaluated by DPPH test. It was found that all the extracts from C. quitensis are characterized by a high content of phenolic compounds (up to 38 mg per one gram of raw material) and exhibit significant antioxidant/antiradical activity (inhibiting up to 90 % of DPPH radicals in 30 min). The antiradical activity of the studied extracts correlates with the total content of antioxidant content of the samples. The extracts from native C. quitensis plants were found to contain mainly flavonoids (glycosides of apigenin, luteolin, and methyl esters of luteolin), which make up approximately 90 % of the total content of phenolic compounds; the other around 10 % of phenolic antioxidants are hydroxybenzoic and hydroxycinnamic acids. In contrast, in the extract from the in vitro culture, phenolic acids prevailed (approximately 58 %). The biochemical composition of the C. quitensis extracts differed from that of D. antarctica extract by a much higher relative content of apigenin derivatives (16—43 % of the total content of phenolic compounds vs. 3 % in D. antarctica) and a lower content of luteolin derivatives (46—71 % vs. 79 %) and phenolic acids (9—13 % vs. 18 %). Compared to the D. antarctica extract, the total content of phenolic compounds in the studied C. quitensis extracts is lower, and accordingly, the ability of these extracts to inhibit DPPH radicals is lower. Nevertheless, like D. antarctica, C. quitensis is also an efficient producer of valuable natural antioxidants.

Downloads

Download data is not yet available.

References

Alberdi, M., Bravo, L. A., Gutiérrez, A., Gidekel, M. & Corcuera, L. J. (2002). Ecophysiology of Antarctic vas- cular plants. Physiol. Plant., 115, No. 4, pp. 479-486. https://doi.org/10.1034/j.1399-3054.2002.1150401.x

Lütz, C., Blassing, M. & Remias, D. (2008). Different flavonoid patterns in Deschampsia antarctica and Coloban- thus quitensis from the Marine Antarctic. In Wiencke, C., Ferreyra, G. A., Abele, D. & Marenssi, S. (Eds.). The Antarctic ecosystem of Potter Cove, King-George Island (Isla 25 de Mayo): Synopsis of research performed 1999-2006 at the Dallmann Laboratory and Jubany Station. Berichte zur Polar- und Meeresforschung (Reports on Polar and Marine Research) (Vol. 571) (pp. 192-199). Bremerhaven: Alfred Wegener Institute Für Polar und Meeresforschung. https://doi.org/10.2312/BzPM_0571_2008

Ahmed, E., Arshad, M., Khan, M. Z., Amjad, M. S., Sadaf, H. M., Riaz, I., Sabir, S., Ahmad, N. & Sabaoon (2017). Secondary metabolites and their multidimensional prospective in plant life. J. Pharmacogn. Phytochem., 6, No. 2, pp. 205-214. Retrieved from https://www.phytojournal.com/archives/2017/vol6issue2/PartC/6-2-2-130.pdf

Köhler, H., Contreras, R. A., Pizarro, M., Cortés-Antíquera, R. & Zúñiga, G. E. (2017). Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front. Plant Sci., 8, Art. 921. https://doi.org/10.3389/ fpls.2017.00921

Ivannikov, R., Anishchenko, V., Kuzema, P., Stavinskaya, O., Laguta, I., Poronnik, O. & Parnikoza, I. (2022). Chromatographic and mass spectrometric analysis of secondary metabolites of Deschampsia antarctica from Galindez Island, Argentine Islands. Pol. Polar Res., 43, No. 4, pp. 341-362. https://doi.org/10.24425/ ppr.2022.140369

Pérez Davó, A., Truchuelo, M. T., Vitale, M. & Gonzalez-Castro, J. (2019). Efficacy of an antiaging treatment against environmental factors: Deschampsia antarctica extract and high-tolerance retinoids combination. J. Clin. Aesthet. Dermatol., 12, No. 7, pp. E65-E70. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715328/

Malvicini, M., Gutierrez, Moraga, A., Rodriguez, M. M., Gomez Bustillo, S., Salazar, L., Sunkel, C., Nozal L., Salgado, A., Hidalgo, M., Lopez Casas, P. P., Novella, J. L., Vaquero, J. J., Alvarez Builla, J., Mora, A., Gidekel, M.

& Mazzolini, G. (2018). A tricin derivative from Deschampsia antarctica Desv. inhibits colorectal carcinoma growth and liver metastasis through the induction of a specific immune response. Mol. Cancer Ther., 17, No. 5, pp. 966-976. https://doi.org/10.1158/1535-7163.MCT-17-0193

Konvalyuk, I. I., Mozhylevs’ka, L. P. & Kunakh, V. A. (2019). Callus initiation and organogenesis in vitro in Deschampsia antarctica E. Desv. The Bulletin of Ukrainian Society of Geneticists and Breeders, 17, No. 1, pp. 8-15 (in Ukrainian). Retrieved from http://nbuv.gov.ua/UJRN/Vutgis_2019_17_1_4

Contreras, R. A., Pizarro, M., Köhler, H., Zamora, P., & Zúñiga, G. E. (2019). UV-B shock induces photoprotec- tive flavonoids but not antioxidant activity in Antarctic Colobanthus quitensis (Kunth) Bartl. Environ. Exp. Bot., 159, pp. 179-190. https://doi.org/10.1016/j.envexpbot.2018.12.022

Pereira, B. K., Rosa, R. M., da Silva, J., Guecheva, T. N., Oliveira, I. M., Ianistcki, M., Benvegnú, V. C., Furtado,

G. V., Ferraz, A., Richter, M. F., Schroder, N., Pereira, A. B. & Henriques, J. A. P. (2009). Protective effects of three extracts from Antarctic plants against ultraviolet radiation in several biological models. J. Photochem. Photobiol. B., 96, No. 2, pp. 117-129. https://doi.org/10.1016/j.jphotobiol.2009.04.011

Ivannikov, R., Anishchenko, V., Poronnik, O., Myryuta, G., Miryuta, N., Boyko, O., Hrytsak, L., & Parnikoza І. (2023). Bioactive substances of Colobanthus quitensis (Kunth) Bartl. from the Darboux and Lagotellerie Islands, western coast of Antarctic Peninsula. Ukr. Antarct. J., 21, No. 1, pp. 90-102. https://doi.org/10.33275/1727-7485.1.2023.710

Contreras, R. A., Pizarro, M., Peña-Heyboer, N., Mendoza, L., Sandoval, C., Muñoz-Gonzáles, R., & Zúñiga,

G. E. (2022). Antifungal activity of extracts from the Antarctic plant Colobanthus quitensis Kunth. (Bartl) cul- tured in vitro against Botrytis cinerea Pers. Arch. Phytopathol. Plant Prot., 55, No. 5, pp. 615-635. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/03235408.2022.2035965

Webby, R. F. & Markham, K. R. (1994). Isoswertiajaponin 2''-O-β-arabinopyranoside and other flavone-C- glycosides from the Antarctic grass Deschampsia antarctica. Phytochemistry, 36, No. 5, pp. 1323-1326. https:// doi.org/10.1016/S0031-9422(00)89660-0

Bravo, L. A., Ulloa, N., Zúñiga, G. E., Casanova, A., Corcuera, L. J. & Alberdi, M. (2001). Cold resistance in Antarctic angiosperms. Physiol. Plant., 111, pp. 55-65. https://doi.org/10.1034/j.1399-3054.2001.1110108.x

Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT, 28, No. 1, pp. 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Published

23.04.2024

How to Cite

Laguta, I., Stavinskaya, O., Kuzema, P., Anishchenko, V., Ivannikov, R., Poronnik О., & Parnikoza, I. (2024). STUDY ON THE COMPOSITION AND ANTIOXIDANT PROPERTIES OF EXTRACTS FROM COLOBANTHUS QUITENSIS PLANTS ORIGINATING FROM THE REGIONS OF THE SOUTH SHETLAND ISLANDS, DANCO COAST AND GRAHAM COAST. Reports of the National Academy of Sciences of Ukraine, (2), 25–34. https://doi.org/10.15407/dopovidi2024.02.025

Most read articles by the same author(s)