ENZYMATIC KINETIC DERACEMIZATION OF FLUORINE-CONTAINING 3-ARYLALKANOIC ACIDS

Authors

  • A.О. Kolodiazhna V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv https://orcid.org/0000-0002-7990-7830
  • O. Faiziev V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv
  • O.I. Kolodiazhnyi V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the NAS of Ukraine, Kyiv https://orcid.org/0000-0002-7693-5369

DOI:

https://doi.org/10.15407/dopovidi2023.05.037

Keywords:

biocatalysis, Burholderia cepacia, Candida antarctica B, fluorinated carboxylic acids, chiral highperformance liquid chromatography

Abstract

Enantiomerically pure fluorine-containing 3-arylalkanoic acids were obtained by enzymatic hydrolysis of racemic esters of these acids. Optimization of the deracemization process was achieved by the selection of biocatalysts, acylating reagents, and temperature. The influence of the conditions of the deracemization process and the structure of the substrates on the efficiency of the biocatalytic resolution was also studied. As a result, fluorine-containing 3-arylalkanoic acids of (S)- and (R)-absolute configuration of high stereochemical purity were obtained. After the kinetic resolution the enantiomeric purity of the products attained 99 % еe.

Downloads

Download data is not yet available.

References

Liang, T., Neumann, C. N. & Ritter, T. (2013). Introduction of fluorine and fluorine‐containing functional groups. Angew. Chem. Int. Ed., 52, pp. 8214-8264. https://doi.org/10.1002/anie.201206566

Besset, T., Schneider, C. & Cahard, D. (2012). Tamed arene and heteroarene trifluoromethylation. Angew. Chem. Int. Ed., 51, pp. 5048-5050. https://doi.org/10.1002/anie.201201012

Jin, Z., Hammond, G. B. & Xu, B. (2012). Transition-metal-mediated fluorination, difluoromethylation, and trifluoromethylation. Aldrichimica Acta, 45, pp. 67-83.

Ye, Y. & Sanford, M. S. (2012). Investigations into transition-metal-catalyzed arene trifluoromethylation reactions. Synlett, 23, pp. 2005–2013. https://doi.org/10.1055/s-0032-1316988

Manteau, B., Pazenok, S., Vors, J. -P. & Leroux, F. R. (2010). New trends in the chemistry of α-fluorinated ethers, thioethers, amines and phosphines. J. Fluorine Chem., 131, pp. 140-158. https://doi.org/10.1016/j. jfluchem.2009.09.009

Irurre, J., Jr., Casas, J. & Messeguer, A. (1993). Resistance of the 2, 2, 2-trifluoroethoxy aryl moiety to the cytochrome P-450 metabolism in rat liver microsomes. Bioorg. Med. Chem. Lett., 3, pp. 179-182. https://doi. org/10.1016/S0960-894X(01)80872-6

Reddy, M. R., Shibata, N., Kondo, Y., Nakamura, S. & Toru, T. (2006). Design, synthesis, and spectroscopic investigation of zinc dodecakis (trifluoroethoxy) phthalocyanines conjugated with deoxyribonucleosides. Angew. Chem. Int. Ed., 45, pp. 8163-8166. https://doi.org/10.1002/anie.200603590

Yoshiyama, H., Shibata, N., Sato, T., Nakamura, S. & Toru, T. (2008). Synthesis and properties of trifluoroethoxycoated binuclear phthalocyanine. Chem. Commun., 17, pp. 1977-979. https://doi.org/10.1039/b800918j

Legros, J., Dehli, J. R. & Bolm, C. (2005). Applications of catalytic asymmetric sulfide oxidations to the syntheses of biologically active sulfoxides. Adv. Synth. Catal., 347, pp. 19-31. https://doi.org/10.1002/adsc.200404206

Marcantoni, E., Roselli, G., Lucarelli, L., Renzi, G., Filippi, A., Trionfetti, A. F. C. & Speranza, M. (2005). Crucial role of elusive isomeric η-complexes in gas-phase electrophilic aromatic alkylations. J. Org. Chem.,70, pp. 4133- 4141. https://doi.org/10.1021/jo050019q

Fuganti, C. & Serra, S. (2000). Baker’s yeast-mediated enantioselective synthesis of the bisabolane sesquiterpenes (+)-curcuphenol, (+)-xanthorrhizol, (–)-curcuquinone and (–)-curcuhydroquinone. J. Chem. Soc., Perkin Trans. 1, pp. 3758-3764. https://doi.org/10.1039/b006141g

Szpera, R., Isenegger, P. G., Ghosez, M., Straathof, N. J. W., Cookson, R., Blakemore, D. C., Richardson, P. & Gouverneur, V. (2020). Synthesis of fluorinated alkyl aryl ethers by palladium-catalyzed C–O cross-coupling. Org. Lett., 22, pp. 6573-6577. https://doi.org/10.1021/acs.orglett.0c02347

Sun, X., Zhou, L., Wang, C. -J. & Zhang, X. (2007). Rh-Catalyzed highly enantioselective synthesis of 3-arylbutanoic acids. Angew. Chem. Int. Ed., 46, pp. 2623-2626. https://doi.org/10.1002/anie.200604810

Guo, S., Wang, X. & Zhou, J. S. (2020). Asymmetric umpolung hydrogenation and deuteration of alkenes catalyzed by nickel. Org. Lett., 22, pp. 1204–1207. https://doi.org/10.1021/acs.orglett.0c00112

Margolin, A. L. (1993). Enzymes in the synthesis of chiral drugs. Enzyme Microb. Technol., 15, pp. 266-280. https://doi.org/10.1016/0141-0229(93)90149-v

Deasy, R. E., Brossat, M., Moody, T. S. & Maguire, A R. (2011). Lipase catalysed kinetic resolutions of 3-aryl alkanoic acids. Tetrahedron: Asymmetry, 22, pp. 47-61. https://doi.org/10.1016/j.tetasy.2010.12.019

Published

22.11.2023

How to Cite

Kolodiazhna, A., Faiziev, O., & Kolodiazhnyi, O. (2023). ENZYMATIC KINETIC DERACEMIZATION OF FLUORINE-CONTAINING 3-ARYLALKANOIC ACIDS. Reports of the National Academy of Sciences of Ukraine, (5), 37–46. https://doi.org/10.15407/dopovidi2023.05.037