DETERMINATION OF IVERMECTIN ALLOSTERIC INTERACTION PATTERNS WITH GLUTAMATE-GATED CHLORIDE CHANNEL OF CAENORHABDITIS ELEGANS

Authors

DOI:

https://doi.org/10.15407/dopovidi2023.04.076

Keywords:

ivermectin, Caenorhabditis elegans, glutamate-gated chloride channels, in silico modelling

Abstract

This study aimed to determine the structural patterns of ivermectin, a compound with anthelmintic and insecticidal activity, in its allosteric interactions with the α-homopentameric glutamate-gated chloride channel of Caenorhabditis elegans. The findings reveal that the binding site primarily consists of hydrophobic, aliphatic, polar, and small residues. The macrocyclic lactone ring exhibits a high affinity for the V—I—G—A—M pattern, involving residues V278, I280, G281, A282, and M284 of the M3 subunit of the (+) configuration, as well as the I—V—D—L pattern, encompassing residues I273 of the M2-M3 region, D277, V278 of the M3 subunit of the (+) configuration, and L218 of the M1 subunit (—) configuration. The spiroketal group interacts with the M—T—F— C—M—I pattern, comprising residues M284, T285, and F288 of the M3 subunit of the (+) configuration, and C225, M226, and I229 of the M1 subunit (—) configuration. Regarding the benzofuran group, it predominantly interacts quantitatively with small and polar residues. However, it exhibits fewer contacts with hydrophobic residues compared to the other groups. This is evident in the T—A—S—N—D—I—L—Q—I—P pattern, involving residues T257, A258, S260, N264, D277, and I280 of the M3 subunit of the (+) configuration, and L218, Q219, I222, and P223 of the M1 subunit (—) configuration. The obtained data can be utilized to identify new molecular targets for ivermectin and facilitate the development of new ligands with high affinity for the identified ivermectin targets in various eukaryotic organisms.

Downloads

Download data is not yet available.

References

Mittal, N. & Mittal, R. (2021). Repurposing old molecules for new indications: defining pillars of success from lessons in the past. Eur. J. Pharmacol., 912, 174569. https://doi.org/10.1016/j.ejphar.2021.174569

Boudwin, R., Magarey, R. & Jess, L. (2022). Integrated pest management data for regulation, research, and education: crop profiles and pest management strategic plans. J. Integr. Pest Manag., 13, No. 1, 13. https://doi. org/10.1093/jipm/pmac011

Habschied, K., Krstanović, V., Zdunić, Z., Babić, J., Mastanjević, K. & Šarić, G. K. (2021). Mycotoxins biocontrol methods for healthier crops and stored products. J. Fungi, 7, No. 5, 348. https://doi.org/10.3390/jof7050348

Martin, R. J., Robertson, A. P. & Choudhary, S. (2021). Ivermectin: an anthelmintic, an insecticide, and much more. Trends Parasitol., 37, No. 1, pp. 48-64. https://doi.org/10.1016/j.pt.2020.10.005

Ashraf, S., Beech, R. N., Hancock, M. A. & Prichard, R. K. (2015). Ivermectin binds to Haemonchus contortus tubulins and promotes stability of microtubules. Int. J. Parasitol., 45, No. 9—10, pp. 647-654. https://doi. org/10.1016/j.ijpara.2015.03.010

Salentin, S., Haupt, V. J., Daminelli, S. & Schroeder, M. (2014). Polypharmacology rescored: protein–ligand interaction profiles for remote binding site similarity assessment. Prog. Biophys. Mol. Biol., 116, No. 2-3, pp. 174-186. https://doi.org/10.1016/j.pbiomolbio.2014.05.006

Hibbs, R. E. & Gouaux, E. (2011). Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature, 474, No. 7349, pp. 54-60. https://doi.org/10.1038/nature10139

Volkamer, A., Griewel, A., Grombacher, T. & Rarey, M. (2010). Analyzing the topology of active sites: on the prediction of pockets and subpockets. J. Chem. Inf. Model., 50, No. 11, pp. 2041-2052. https://doi.org/10.1021/ ci100241y

Valdar, W. S. J. (2001). Scoring residue conservation. Proteins, 48, No. 2, pp. 227-241. https://doi.org/10.1002/ prot.10146

Schneider, N., Lange, G., Hindle, S., Klein, R. & Rarey, M. (2013). A consistent description of HYdrogen bond and DEhydration energies in protein–ligand complexes: methods behind the HYDE scoring function. J. Comput. Aided Mol. Des., 27, No. 1, pp. 15-29. https://doi.org/10.1007/s10822-012-9626-2

Korb, O., Stützle, T. & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. J. Chem. Inf. Model., 49, No. 1, pp. 84-96. https://doi.org/10.1021/ci800298z

Mooij, W. T. M. & Verdonk, M. L. (2005). General and targeted statistical potentials for protein–ligand interactions. Proteins, 61, No. 2, pp. 272-287. https://doi.org/10.1002/prot.20588

Published

08.09.2023

How to Cite

Kustovskiy , Y., & Yemets , A. (2023). DETERMINATION OF IVERMECTIN ALLOSTERIC INTERACTION PATTERNS WITH GLUTAMATE-GATED CHLORIDE CHANNEL OF CAENORHABDITIS ELEGANS. Reports of the National Academy of Sciences of Ukraine, (4), 76–84. https://doi.org/10.15407/dopovidi2023.04.076

Section

Biology

Most read articles by the same author(s)