SYNTHESIS OF 1-FUNCTIONAL SUBSTITUTED PYRROLO[1,2-a]QUINAZOLINE-5(1H)-ONE DERIVATIVES
DOI:
https://doi.org/10.15407/dopovidi2023.03.060Keywords:
quinazolinones, pyrroloquinazolinones, reduction, nucleophilic substitution, functional derivativesAbstract
A convenient synthetic method for the preparation of 1-(iodomethyl)-2,3,3a,4-tetrahydropyrrolo[1,2-a]quinazolin-5(1H)-ones has been developed. This method involves the selective reduction of 1-iodomethylpyrroloquinazolinium iodides using sodium borohydride. The targeted modification of the iodomethyl moiety of 1-(iodomethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones with S- and N-containing nucleophilic reagents has been demonstrated, leading to the synthesis of derivatives with thioacetate and azide functional groups. Hydrogenation of the latter compounds using 10% Pd/C catalyst yielded promising synthetic building blocks, namely, 1-(aminomethyl)pyrrolo[1,2-a]quinazolin-5(1H)-ones. Furthermore, the behavior of 1-(iodomethyl)-2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones in the presence of ammonia was investigated, which resulted in the cleavage of the C-N bond of the pyrrolidine ring and the formation of 2-(3-oxobutyl)quinazolin-4(3H)-ones, displaying chain-ring tautomeric behavior.
Downloads
References
Mhaske, S. B. & Argade, N. P. (2006). The chemistry of recently isolated naturally occurring quinazolinone alkaloids. Tetrahedron, 62, No. 42, pp. 9787-9826. https://doi.org/10.1016/j.tet.2006.07.098
Kshirsagar, U. A. (2015). Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 13, No. 36, pp. 9336-9352. https://doi.org/10.1039/C5OB01379H
Shang, X.-F., Morris-Natschke, S. L., Liu, Y.-Q., Guo, X., Xu, X.-Sh., Goto, M., Li, J.-C., Yang, G.-Z. & Lee, K.-H. (2018). Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 38, No. 3, pp. 775-828. https://doi.org/10.1002/med.21466
Shang, X.-F., Morris-Natschke, S. L., Yang, G.-Z., Liu, Y.-Q., Guo, X., Xu X.-Sh., Goto, M., Li, J.-C., Zhang, J.-Y. & Lee, K.-H. (2018). Biologically active quinoline and quinazoline alkaloids part II. Med. Res. Rev., 38, No. 5, pp. 1614-1660. https://doi.org/10.1002/med.21492
He, D., Wang, M., Zhao, S., Shu, Y., Zeng, H., Xiao, C., Lu, C. & Liu, Y. (2017). Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia, 119, pp. 136-149. https://doi.org/10.1016/j.fitote.2017.05.001
Dumitrascu, F., Georgescu, F., Georgescu, E. & Cairad, M. R. (2019). Chapter three-pyrroloquinolines, imidazoquinolines, and pyrroloquinazolines with a bridgehead nitrogen. Adv. Heterocycl. Chem., 129, pp. 155-244. https://doi.org/10.1016/bs.aihch.2019.01.004
Alagarsamy, V., Chitra, K., Saravanan, G., Solomon, V. R., Sulthana, M. T. & Narendhar, B. (2018). An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 151, pp. 628-685. https://doi.org/10.1016/j.ejmech.2018.03.076
Dumitrascu, F. & Popa, M. M. (2014). Pyrrolo[1,2-a]quinazolines: synthesis and biological properties. Arkivoc, i, pp. 428-452. https://doi.org/10.3998/ark.5550190.p008.699
Darras, F. H., Kling, B., Heilmann, J. & Decker, M. (2012). Neuroprotective tri- and tetracyclic BChE inhibi-tors releasing reversible inhibitors upon carbamate transfer. ACS Med. Chem. Lett., 3, No. 11, pp. 914-919. https://doi.org/10.1021/ml3001825
Stavytskyi, V., Antypenko, O., Nosulenko, I., Berest, G., Voskoboinik, O. & Kovalenko, S. (2021). Substituted 3-R-2,8-dioxo-7,8-dihydro-2H-pyrrolo[1,2-a][1,2,4]triazino[2,3-c]quinazoline-5a(6H)carboxylic acids and their salts — a promising class of anti-inflammatory agents. Antiinflamm. Antiallergy Agents Med. Chem., 20, pp. 75-88. https://doi.org/10.2174/1871523019666200505073232
Kazemi, S. S., Keivanloo, A., Nasr-Isfahani, H. & Bamoniri, A. (2016). Synthesis of novel 1,5-disubstituted pyr-rolo[1,2-a]quinazolines and their evaluation for anti-bacterial and anti-oxidant activities. RSC Adv., 6, pp. 92663-92669. https://doi.org/10.1039/C6RA21219K
Pat. 5214047A US, IPC C07D 471/14, A61P 9/06, C07D 487/14, Tetracyclic quinazoline derivatives, effective as antiarrythmic agents, Ostersehlt, B., Schlecker, R., Rendenbach, B., Von Philipsborn, G. & Franke, A., Publ. 25.05.1993.
Pat. 3475432 US, Pyrrolo[1,2-a]quinazoline-1,5-(2H,3H)diones. Bell, S. C. & Wei, P. H. L., Publ. 28.10.1969.
Pat. WO 2013008872/A1, IPC C07D 487/04, A61K 31/519, A61K 31/5377, A61K 31/551, A61P 9/10, A61P 27/02, A61P 43/00, C07D 495/14, C07D 519/00, Novel compound having PARP inhibitory activity, Honda, T., Enomoto, H., Kawashima, K., Takaoka, S., Fujioka, Y., Matsuda, M., Ohashi, K., Fujita, Y., Hirai, S.-I. & Kurashima, H., Publ. 17.01.2013.
Sutherell, C. L., Tallant, C., Monteiro, O. P., Yapp, C., Fuchs, J. E., Fedorov, O., Siejka, P., Müller, S., Knapp, S., Brenton, J. D., Brennan, P. E. & Ley, S. V. (2016). Identification and development of 2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-one inhibitors targeting bromodomains within the switch/sucrose nonfermenting complex. J. Med. Chem., 59, No. 10, pp. 5095-5101. https://doi.org/10.1021/acs.jmedchem.5b01997
Bubenyák, M., Pálfi, M., Takács, M., Béni, S., Szökő, E., Noszál, B. & Kökösi, J. (2008). Synthesis of hybrids be-tween the alkaloids rutaecarpine and luotonins A, B. Tetrahedron Lett., 49, No. 33, pp. 4937-4940. https://doi.org/10.1016/j.tetlet.2008.05.141
Rahman, A. F. M. M., Jeong, B.-S., Kim, D. H., Park, J. K., Lee, E. S. & Jahng, Y. (2007). A facile synthesis of α, α’-bis(substituted-benzylidene)-cycloalkanones and substituted-benzylidene heteroaromatics: utility of NaOAc as a catalyst for aldol-type reaction. Tetrahedron, 63, No. 11, pp. 2426-2431. https://doi.org/10.1016/j.tet.2007.01.020
Du, H., Jiang, X., Ma, M., Xu, H., Liu, S. & Ma, F. (2020). Novel deoxyvasicinone and tetrahydro-beta-carboline hybrids as inhibitors of acetylcholinesterase and amyloid beta aggregation. Bioorg. Med. Chem. Lett., 30, No. 24, 127659. https://doi.org/10.1016/j.bmcl.2020.127659
Mangla, V., Nepali, K., Singh, G., Singh, J., Guru, S., Gupta, M. K., Mahajan, P., Saxena, A. K. & Dhar, K. L. (2013). Structure activity relationship of arylidene pyrrolo and pyrido[2,1-b]quinazolones as cytotoxic agents: syn-thesis, SAR studies, biological evaluation and docking studies. Med. Chem., 9, No. 5, pp. 642-650. https://doi.org/10.2174/1573406411309050003
Boisse, T., Gavara, L., Hénichart, J.-P., Rigo, B. & Gautret, P. (2009). Toward new camptothecins. Part 5: On the synthesis of precursors for the crucial Friedlender reaction. Tetrahedron, 65, No. 12, pp. 2455-2466. https://doi.org/10.1016/j.tet.2009.01.077
Kamal, A., Ramana, K. V. & Rao, M. V. (2001). Chemoenzymatic synthesis of pyrrolo[2,1-b]quinazolinones: lipase-catalyzed resolution of vasicinone. J. Org. Chem., 66, No. 3, pp. 997-1001. https://doi.org/10.1021/jo0011484
Molina, P., Tárraga, A. & González-Tejero, A. (2000). A convenient divergent approach to the alkaloids isain-digotone and luotonin A. Synthesis, 2000, No. 11, pp. 1523-1525. https://doi.org/10.1055/s-2000-7602
Dunn, A. D., Kinnear, K. I., Norrie, R., Ringan, N. & Martin, D. (1987). New reactions of deoxyvasicinone. Part 6. J. Het. Chem., 24, pp. 175-180. https://doi.org/10.1002/jhet.5570240133
Jaén, J. C., Gregor, V. E., Lee, C., Davis, R. & Emmerling, M. (1996). Acethylcholinesterase inhibition by fused dihydroquinazoine compounds. Bioorg. Med. Chem. Lett., 6, No. 6, pp. 737-742. https://doi.org/10.1016/0960-894X(96)00102-3
Decker, M., Krauth, F. & Lehmann, J. (2006). Novel tricyclic quinazolinimines and related tetracyclic nitrogen bridgehead compounds as cholinesterase inhibitors with selectivity towards butyrylcholinesterase. Bioorg. Med. Chem., 14, No. 6, pp. 1966-1977. https://doi.org/10.1016/j.bmc.2005.10.044
Du, H., Liu, X., Xie, J. & Ma, F. (2019). Novel deoxyvasicinone-donepezil hybrids as potential multitarget drug candidates for Alzheimer’s disease. ACS Chem. Neurosci., 10, No. 5, pp. 2397-2407. https://doi.org/10.1021/acschemneuro.8b00699
Sutherell, C. L. & Ley, S. V. (2017). On the synthesis and reactivity of 2,3-dihydropyrrolo[1,2-a]quinazolin-5(1H)-ones. Synthesis, 49, pp. 135-144. https://doi.org/10.1055/s-0035-1562792
Vaskevych, R. I., Savinchuk, N. O., Vaskevych, A. I., Rusanov, E. B., Bylina, D. V., Kyrylchuk, A. A. & Vovk, M. V. (2022). Proton- and halogen-induced cyclizations of 2-(3-butenyl)quinazolin-4(3H)-ones in the synthesis of pyrrolo[2,1-b]- and pyrrolo[1,2-а]quinazolinone derivatives. J. Heterocycl. Chem., 60, No. 3, pp. 431-448.
https://doi.org/10.1002/jhet.4598
Orysyk, V. V., Zborovskii, Yu. L., Staninets, V. I., Dobosh, A. A. & Khripak, S. M. (2003). Synthesis of thiazino- and thiazoloquinazolinones by cyclization of S-(2-propenyl) derivatives of 2-thioxo-2,3-dihydro-4(1H)-quinazolinone. Chem. Heterocycl. Compd., 39, pp. 640-644. https://doi.org/10.1023/A:1025154317771
Chern, J.-W., Tao, P.-L., Wang, K.-C., Gutcait, A., Liu, S.-W., Yen, M.-H., Chien, S.-L. & Rong, J.-K. (1998). Stud-ies on quinazolines and 1,2,4-benzothiadiazine 1,1-dioxides. 8.1,2 Synthesis and pharmacological evaluation of tricyclic fused quinazolines and 1,2,4-benzothiadiazine 1,1-dioxides as potential α1-adrenoceptor antago-nists. J. Med. Chem., 41, No. 17, pp. 3128-3141. https://doi.org/10.1021/jm970159v
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.