Experimental complex for studying the physical properties of artificially formed gas hydrate containing sediments

Authors

DOI:

https://doi.org/10.15407/dopovidi2022.05.051

Keywords:

gas hydrates, marine sediments, methane, modeling, physical properties

Abstract

The presence of gas hydrates in marine bottom sediments significantly changes their physical properties, so they can be detected by remote geophysical observations. Physical properties of gas hydrate-containing sediments (HCS) are extremely important information for detecting the presence of these compounds, estimating the amount of captured gas hydrates by sediments, as well as developing methods for using this resource. Currently, the study of physical properties concerned mainly artificial gas hydrates in the process of formation and decomposition under various thermodynamic conditions in their pure form. Therefore, very little is known about the physical properties of HCS, which makes their detection by remote geophysical surveys too difficult. Development and creation of experimental laboratory modular complex for formation and measurement of physical properties of artificial methane gas hydrates in various lithological-granulometric matrices (sandstones, argillites, siltstones, etc. ) will increase efficiency geophysical methods of their exploration and optimize of technology of methane hydrate deposits development.

Downloads

Download data is not yet available.

References

Makogon, Y. F. (2010). Natural gas hydrates — a promising source of energy. J. Nat. Gas Sci. Eng., 2, pp. 49-59. https://doi.org/10.1016/j. jngse.2009.12.004

Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., Jang, J., Jung, J. W., Kneafsey, T. J., Shin, H., Soga, K., Winters, W. J. & Yun, T. -S. (2009). Physical properties of hydrate-bearing sediments. Rev. Geophys., 47 (RG4003), pp. 1-38. https://doi.org/10.1029/2008RG000279

Stern, L. A., Kirby, S. H., Durham, W. B., Circone, S. & Waite, W. F. (2000). Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior. In Max, M. D. (Ed. ). Natural gas hydrate, in oceanic and permafrost environments (pp. 323-348). Dordrecht: Springer. https://doi.org/10.1007/978-94-011-4387-5_25

Sloan, E. D., Koh, C. A. & Sum, A. K. (2010). Gas hydrate stability and sampling: The future as related to the phase diagram. Energies, 3, pp. 1991-2000. https://doi.org/10.3390/en3121991

Klar, A., Deerberg, G., Janicki, G., Schicks, J., Riedel, M., Fietzek, P., Mosch, T., Tinivella, U., De La Fuente Ruiz, M., Gatt, P., Schwalenberg, K., Heeschen, K., Bialas, J., Pinkert, S., Tang, A. M., Kvamme, B., Spangenberg, E., English, N., Bertrand, C., Parlaktuna, M., Sahoo, S. K., Bouillot, B., Desmedt, A. & Wallmann, K. (2019). Marine gas hydrate technology: state of the art and future possibilities for Europe, WG2 report, COST Action ES 1405. https://doi.org/10.3289/MIGRATE_WG2.2019

Kobolev, V. P., Mikhailyuk, S. F. & Safronov, A. M. (2021). Experimental laboratory complex for studying the physical properties of artificially formed gas-hydrate-containing sediments. Geology and mineral resources of World Ocean, 17, No. 3, pp. 22-33 (in Ukrainian). https://doi.org/10.15407/gpimo2021.03.022

Duchkov, A. D., Istomin, V. E. & Sokolova, L. S. (2012). A geothermal method for detecting gas hydrates in the bottom sediments of water basins. Russ. Geol. Geophys., 53 pp. 704-711.https://doi.org/10.1016/j.rgg.2012.05.009

Von Herzen, R. P. & Maxwell, A. E. (1959). The measurement of thermal conductivity of deep-sea sediments by a needle probe method. J. Geophysics. Res., 84, pp. 1629-1634. https://doi.org/10.1029/JZ064i010p01557

Blackwell, J. H. (1954). A transient-flow method for determination of thermal constants of insulating materials in bulk. J. App. Phys., 25, No. 2, pp. 137-144. https://doi.org/10.1063/1.17215921

Du Frane, W. L., Stern, L. A., Weitemeyer, K. A., Constable, S., Pinkston, J. C. & Roberts, J. J. (2011). Electrical properties of polycrystalline methane hydrate. Geophys. Res. Lett., 38, L09313. https://doi.org/10.1029/2011GL047243

Zillmer, M. (2006). A method for determining gas-hydrate and free-gas saturation of porous media from seismic measurements. Geophysics, 71, рр. N21-N32. https://doi.org/10.1190/1.2192910

Published

28.10.2022

How to Cite

Kobolev, V., Mikhailyuk, S. ., & Safronov, A. . (2022). Experimental complex for studying the physical properties of artificially formed gas hydrate containing sediments. Reports of the National Academy of Sciences of Ukraine, (5), 51–60. https://doi.org/10.15407/dopovidi2022.05.051