New photocyclization of 2-(tert-butoxycarbonyl) amino-3,3-dichloroacrylonitrile
DOI:
https://doi.org/10.15407/dopovidi2022.05.079Keywords:
intramolecular [2 2] cycloaddition, 2-amino-3,3-dichloroacrylonitrile, 2,4-methanoproline nitrileAbstract
For the first time, a 2-(allylamino)-3, 3-dichloroacrylonitrile derivative was used in a photoinitiated intramolecular [2+2] cycloaddition, which led to the formation of N-Boc-protected 5, 5-dichloro-2-azabicyclo[2. 1. 1]- hexane-1-carbonitrile — a unique 2-azabicyclo[2. 1. 1]hexane derivative with nitrile group and dichloromethylene moiety. Intramolecular [2+2] photocyclization of 2-(allylamino)acrylates is the foremost way to build 2, 4-methanoprolines, that are still a small group conformationally rigid analogue of Proline derivatives. But this reaction has not been studied for the corresponding acrylonitriles. The capable substrate for [2+2] photocyclization — tert-butyl allyl(2, 2-dichloro-1-cyanovinyl)carbamate — was synthesized by us in high yield from available reagents. Simple synthetic techniques was using: one pot conversion tert-butyl (2, 2, 2-trichloro-1-hydroxyethyl) carbamate to tert-butyl (2, 2-dichloro-1-cyanovinyl)carbamate with subsequent N-allylation. Intramolecular [2+2] cycloaddition was carried out in acetonitrile solution by irradiation with the light of 368 nm wavelength; the use of xanthone instead of the standard photosensitizer acetophenone can reduce the time of target product formation from 12 to 6 hours. The successful using of substituted 2-amino-3, 3-dichloroacrylonitrile in photochemical isomerization make it possible to consider these compounds as promising substrates for the synthesis of bridged bicyclic amines.
Downloads
References
Trabocchi, A., Scarpi, D. & Guarna, A. (2007). Structural diversity of bicyclic amino acids. Amino Acids, 34, Iss. 1, pp. 1-24. https://doi.org/10.1007/s00726-007-0588-y
Wu, G., Kou, B., Tang, G., Zhu, W., Shen, H. C., Liu, H. & Hu, T. (2016). Synthesis of novel and conformationally constrained bridged amino acids as compact modules for drug discovery. Tetrahedron Lett., 57, Iss. 5, pp. 599-602. https://doi.org/10.1016/j.tetlet.2015.12.097
Mikhailiuk, P. K., Afonin, S., Chernega, A. N., Rusanov, E. B., Platonov, M. O., Dubinina, G. G., Berditsch, M., Ulrich, A. S. & Komarov, I. V. (2006). Conformationally rigid trifluoromethyl-substituted α-amino acid designed for peptide structure analysis by solid-state 19F NMR spectroscopy. Angew. Chem., 118, Iss. 34, pp. 5787-5789. https://doi.org/10.1002/ange.200600346
Hughes, P., Martin, M. & Clardy, J. (1980). Synthesis of 2, 4-methanoproline. Tetrahedron Lett., 21, Iss. 48, pp. 4579-4580. https://doi.org/10.1016/0040-4039(80)80078-5
Elliott, L. D., Kayal, S., George, M. W. & Booker-Milburn, K. (2020). Rational design of triplet sensitizers for the transfer of excited state photochemistry from UV to visible. J. Am. Chem. Soc., 142, Iss. 35, pp. 14947-14956. https://doi.org/10.1021/jacs.0c05069
Mykhailiuk, P., Kubyshkin, V., Bach, T. & Budisa, N. (2017). A peptidyl-prolyl model study: how does the electronic effect influence the amide bond conformation? J. Org. Chem., 82, Iss. 17, pp. 8831-8841. https://doi.org/10.1021/acs.joc.7b00803
Esslinger, C. S., Koch, H. P., Kavanaugh, M. P., Philips, D. P., Chamberlin, A. R., Thompson, C. M. & Bridges, R. J. (1998). Structural determinants of substrates and inhibitors: probing glutamate transporters with 2, 4-methanopyrroldidine-2, 4-dicarboxylate. Bioorg. Med. Chem. Lett., 8, Iss. 21, pp. 3101-3106. https://doi.org/10.1016/S0960-894X(98)00560-5
Kurasawa, O., Miyazaki, T., Homma, M., Oguro, Y., Imada, T., Uchiyama, N., Iwai, K., Yamamoto, Y., Ohori, M., Hara, H., Sugimoto, H., Iwata, K., Skene, R., Hoffman, I., Ohashi, A., Nomura, T. & Cho, N. (2020). Discovery of a novel, highly potent, and selective thieno[3, 2-d]pyrimidinone-based Cdc7 inhibitor with a quinuclidine moiety (TAK-931) as an orally active investigational anti-tumor agent. J. Med. Chem., 63, Iss. 3, pp. 1084-1104. https://doi.org/10.1021/acs.jmedchem.9b01427
Juvvadi, P., Dooley, D. J., Humblet, C. C., Lu, G. H., Lunney, E. A., Panek, R. L., Skeean, R. & Marshall, G. R. (1992). Bradykinin and angiotensin II analogs containing a conformationally constrained proline analog. Int. J. Pept. Protein Res., 40, Iss. 3-4, pp. 163-170. https://doi.org/10.1111/j.1399-3011.1992.tb00289.x
Henness, S. & Keam, S. J. (2006). Vildagliptin. Drugs, 66, Iss. 15, pp. 1989-2001. https://doi.org/10.2165/00003495-200666150-00007
Pat. WO2006040625A1, Novel dipeptidyl peptidase IV inhibitors, pharmaceutical compositions containing them, and process for their preparation, Thomas, A., Gopalan, B., Lingam, P. R. V. S. & Shah, D. M. (Glenmark Pharmaceuticals SA), Publ. ·20. 04. 2006.
Drach, B. S., Brovaret, V. S., & Smolii, B. S. (1992). Syntheses of nitrogen-containing heterocyclic compounds based on amidoalkylation agents. Kyiv: Naukova Dumka (in Russian).
Vidal J., Hannachi J. -C., Hourdin G., Mulatier J. -C. & Collet A. (1998). N-Boc-3-trichloromethyloxazi ridine: a new, powerful reagent for electrophilic amination. Tetrahedron Lett., 39, Iss. 48, pp. 8845-884. https://doi.org/10.1016/S0040-4039(98)01983-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.