Semiconductor HPHT-diamonds as active elements of electronic devices: their structural and electronic properties

Authors

DOI:

https://doi.org/10.15407/dopovidi2021.06.068

Keywords:

boron-doped HPHT diamond, temperature gradient method, micro-photogrammetry, Raman spectroscopy, FTIR spectroscopy, KPFM microscopy, Schottky diode

Abstract

Structurally perfect diamond single crystals of type IIb doped with boron with developed growth sectors {113} and {110} are grown by the HPHT- crystallization method. Single-sector semiconductor diamond plates are obtained by the predicted cutting of crystals by mechanical and laser treatments using the developed microphotogrammetric 3D modeling of the sector structure. Raman and IR spectroscopies have been used to study the structural perfection and peculiarities of the defect-impurity composition of crystals. The electronic properties of growth sectors and intersectoral boundaries are characterized by the non-contact method of force Kelvin probe microscopy. The necessity of using certain optical and electrophysical diagnostic methods of p-type semiconductor material certification and the prospects of using single-sector semiconductor wafers for the development of Schottky diode designs are demonstrated.

Downloads

Download data is not yet available.

References

Bormashov, V. S., Tarelkin, S. A., Buga, S. G., Kuznetsov, M. S., Terentiev, S. A., Semenov, A. N. & Blank, V. D. (2013). Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater., 35, рр. 19-23. https://doi.org/10.1016/j.diamond.2013.02.011

Blank, V. D., Bormashov, V. S., Tarelkin, S. A., Buga, S. G., Kuznetsov, M. S., Teteruk, D. V., Kornilov, N. V., Terentiev, S. A. & Volkov, A. P. (2015). Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater., 57, рр. 32-36. https://doi.org/10.1016/j.diamond.2015.01.005

Strelchuk, V. V., Nikolenko, A. S., Lytvyn, P. M., Ivakhnenko, S. O., Kovalenko, T. V., Danylenko, I. M. & Malyuta, S. V. (2021). Growth-sector dependence of morphological, structural and optical features in bo - ron-doped HPHT diamond crystals. Semicond. Physics, Quantum Electron. Optoelectron., 24, No. 3, pp. 261-271. https://doi.org/10.15407/spqeo24.03.261

Lytvyn, P. M., Strelchuk, V. V., Ivakhnenko, S. O., Nikolenko, A. S. & Kovalenko, T. V. (2021). Using digital microphotogrammetry for HPHT-diamond single crystals morphology analysis. Superhard Mater., No. 6, pp. 102-104 (in Ukrainian).

Li, R. F., Thomson, G. B., White, G., Wang, X. Z., Calderon De Anda, J. & Roberts, K. J. (2006). Integration of crystal morphology modeling and on-line shape measurement. AIChE J., 52, No. 6, pp. 2297-2305. https://doi.org/10.1002/aic.10818

Pajerowski, D. M., Ng, R., Peterson, N., Zhang, Y., Stone, M. B., dos Santos, A. M., Bunn, J. & Fanelli, V. (2020). 3D scanning and 3D printing AlSi10Mg single crystal mounts for neutron scattering. Rev. Sci. Instrum., 91, Iss. 5, 053902. https://doi.org/10.1063/5.0008599

Blank, V. D., Denisov, V. N., Kirichenko, A. N., Kuznetsov, M. S., Mavrin, B. N., Nosukhin, S. A. & Terentiev, S. A. (2008). Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diam. Relat. Mater., 17, Iss. 11, pp. 1840-1843. https://doi.org/10.1016/j.diamond.2008.07.004

Nikolenko, A. S., Strelchuk, V. V., Lytvyn, P. M., Malyuta, S. V., Danylenko, I. M., Gontar, O. G., Starik, S. P., Kovalenko, T. V. & Ivakhnenko, S. O. (2021, August). Intersectoral boron-impurity-related fluctuations of local electrical properties in semiconductor HPHT diamond plates of different orientations. Proceedings of the 9th International Research and Practice Conference Nanotechnology and nanomaterials (NANO- 2021) (pp. 389–390), Lviv.

Kim, H., Vogelgesang, R., Ramdas, A. K., Rodriguez, S., Grimsditch, M. & Anthony, T. R. (1998). Electronic Raman and infrared spectra of acceptors in isotopically controlled diamonds. Phys. Rev. B., 57, pp. 15315- 15327. https://doi.org/10.1103/PhysRevB.57.15315

Howell, D., Collins, A. T., Loudin, L. C., Diggle, P. L., D’Haenens-Johansson, U. F. S., Smit, K. V., Katrusha, A. N., Butler, J. E. & Nestola, F. (2019). Automated FTIR mapping of boron distribution in diamond. Diam. Relat. Mater., 96., pp. 207-215. https://doi.org/10.1016/j.diamond.2019.02.029

Collins, A. T. & Williams, A. W. S. (1971). The nature of the acceptor centre in semiconducting diamond. J. Phys. C: Solid State Phys., 4, No. 13, pp. 1789-1800. https://doi.org/10.1088/0022-3719/4/13/030

Weaver, J. M. R. & Abraham, D. W. (1991). High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 9, pp. 1559-1561. https://doi.org/10.1116/1.585423

Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. (1991). Kelvin probe force microscopy. Appl. Phys. Lett., 58, No. 25, pp. 2921-2923. https://doi.org/10.1063/1.105227

Rodriguez, B. J., Yang, W.-C., Nemanich, R. J. & Gruverman, A. (2005). Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures. Appl. Phys. Lett., 86, Iss. 11, pp. 112-115. https://doi.org/10.1063/1.1869535

Bandis, C. & Pate, B.B. (1995). Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission. Phys. Rev. B., 52, pp. 12056-12071. https://doi.org/10.1103/PhysRevB.52.12056

Published

23.12.2021

How to Cite

Kovalenko, T. ., Nikolenko, A. ., Ivakhnenko, S. ., Strelchuk, V. ., Lytvyn, P. ., Danylenko, I. ., & Zanevskiy , O. . (2021). Semiconductor HPHT-diamonds as active elements of electronic devices: their structural and electronic properties. Reports of the National Academy of Sciences of Ukraine, (6), 68–77. https://doi.org/10.15407/dopovidi2021.06.068