Semiconductor HPHT-diamonds as active elements of electronic devices: their structural and electronic properties
DOI:
https://doi.org/10.15407/dopovidi2021.06.068Keywords:
boron-doped HPHT diamond, temperature gradient method, micro-photogrammetry, Raman spectroscopy, FTIR spectroscopy, KPFM microscopy, Schottky diodeAbstract
Structurally perfect diamond single crystals of type IIb doped with boron with developed growth sectors {113} and {110} are grown by the HPHT- crystallization method. Single-sector semiconductor diamond plates are obtained by the predicted cutting of crystals by mechanical and laser treatments using the developed microphotogrammetric 3D modeling of the sector structure. Raman and IR spectroscopies have been used to study the structural perfection and peculiarities of the defect-impurity composition of crystals. The electronic properties of growth sectors and intersectoral boundaries are characterized by the non-contact method of force Kelvin probe microscopy. The necessity of using certain optical and electrophysical diagnostic methods of p-type semiconductor material certification and the prospects of using single-sector semiconductor wafers for the development of Schottky diode designs are demonstrated.
Downloads
References
Bormashov, V. S., Tarelkin, S. A., Buga, S. G., Kuznetsov, M. S., Terentiev, S. A., Semenov, A. N. & Blank, V. D. (2013). Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater., 35, рр. 19-23. https://doi.org/10.1016/j.diamond.2013.02.011
Blank, V. D., Bormashov, V. S., Tarelkin, S. A., Buga, S. G., Kuznetsov, M. S., Teteruk, D. V., Kornilov, N. V., Terentiev, S. A. & Volkov, A. P. (2015). Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater., 57, рр. 32-36. https://doi.org/10.1016/j.diamond.2015.01.005
Strelchuk, V. V., Nikolenko, A. S., Lytvyn, P. M., Ivakhnenko, S. O., Kovalenko, T. V., Danylenko, I. M. & Malyuta, S. V. (2021). Growth-sector dependence of morphological, structural and optical features in bo - ron-doped HPHT diamond crystals. Semicond. Physics, Quantum Electron. Optoelectron., 24, No. 3, pp. 261-271. https://doi.org/10.15407/spqeo24.03.261
Lytvyn, P. M., Strelchuk, V. V., Ivakhnenko, S. O., Nikolenko, A. S. & Kovalenko, T. V. (2021). Using digital microphotogrammetry for HPHT-diamond single crystals morphology analysis. Superhard Mater., No. 6, pp. 102-104 (in Ukrainian).
Li, R. F., Thomson, G. B., White, G., Wang, X. Z., Calderon De Anda, J. & Roberts, K. J. (2006). Integration of crystal morphology modeling and on-line shape measurement. AIChE J., 52, No. 6, pp. 2297-2305. https://doi.org/10.1002/aic.10818
Pajerowski, D. M., Ng, R., Peterson, N., Zhang, Y., Stone, M. B., dos Santos, A. M., Bunn, J. & Fanelli, V. (2020). 3D scanning and 3D printing AlSi10Mg single crystal mounts for neutron scattering. Rev. Sci. Instrum., 91, Iss. 5, 053902. https://doi.org/10.1063/5.0008599
Blank, V. D., Denisov, V. N., Kirichenko, A. N., Kuznetsov, M. S., Mavrin, B. N., Nosukhin, S. A. & Terentiev, S. A. (2008). Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diam. Relat. Mater., 17, Iss. 11, pp. 1840-1843. https://doi.org/10.1016/j.diamond.2008.07.004
Nikolenko, A. S., Strelchuk, V. V., Lytvyn, P. M., Malyuta, S. V., Danylenko, I. M., Gontar, O. G., Starik, S. P., Kovalenko, T. V. & Ivakhnenko, S. O. (2021, August). Intersectoral boron-impurity-related fluctuations of local electrical properties in semiconductor HPHT diamond plates of different orientations. Proceedings of the 9th International Research and Practice Conference Nanotechnology and nanomaterials (NANO- 2021) (pp. 389–390), Lviv.
Kim, H., Vogelgesang, R., Ramdas, A. K., Rodriguez, S., Grimsditch, M. & Anthony, T. R. (1998). Electronic Raman and infrared spectra of acceptors in isotopically controlled diamonds. Phys. Rev. B., 57, pp. 15315- 15327. https://doi.org/10.1103/PhysRevB.57.15315
Howell, D., Collins, A. T., Loudin, L. C., Diggle, P. L., D’Haenens-Johansson, U. F. S., Smit, K. V., Katrusha, A. N., Butler, J. E. & Nestola, F. (2019). Automated FTIR mapping of boron distribution in diamond. Diam. Relat. Mater., 96., pp. 207-215. https://doi.org/10.1016/j.diamond.2019.02.029
Collins, A. T. & Williams, A. W. S. (1971). The nature of the acceptor centre in semiconducting diamond. J. Phys. C: Solid State Phys., 4, No. 13, pp. 1789-1800. https://doi.org/10.1088/0022-3719/4/13/030
Weaver, J. M. R. & Abraham, D. W. (1991). High resolution atomic force microscopy potentiometry. J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct., 9, pp. 1559-1561. https://doi.org/10.1116/1.585423
Nonnenmacher, M., O’Boyle, M. P. & Wickramasinghe, H. K. (1991). Kelvin probe force microscopy. Appl. Phys. Lett., 58, No. 25, pp. 2921-2923. https://doi.org/10.1063/1.105227
Rodriguez, B. J., Yang, W.-C., Nemanich, R. J. & Gruverman, A. (2005). Scanning probe investigation of surface charge and surface potential of GaN-based heterostructures. Appl. Phys. Lett., 86, Iss. 11, pp. 112-115. https://doi.org/10.1063/1.1869535
Bandis, C. & Pate, B.B. (1995). Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission. Phys. Rev. B., 52, pp. 12056-12071. https://doi.org/10.1103/PhysRevB.52.12056
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.