Testing the state of human erythrocytes after combined action of posthypertonic shock and amphiphilic compounds
DOI:
https://doi.org/10.15407/dopovidi2021.06.120Keywords:
posthypertonic shock; human erythrocytes; amphiphilic compounds, temperatureAbstract
The effect of the temperature on the state of erythrocytes, which survived after the combined action of posthypertonic shock (PHS) and amphiphilic compounds, is studied. The effective concentrations (high) and concentrations corresponding to the beginning of the plateau (low) are determined from the dependences of posthypertonic hemolysis of erythrocytes on the concentration of amphiphilic compound (0 ºC). It is found that, when using anionic sodium decyl sulfate in both concentrations, the cells that survived after the action of PHS and amphiphilic compounds are resistant to the temperature rise (from 10 to 37 ºC). When using cationic trifluoroperazine and nonionic decyl-ß,D-glucopyranoside in high concentrations, the erythrocytes have been shown to be sensitive to heat, and in low ones — resistant. Therefore, for all tested substances, the selection from the plateau of such a concentration at which the cells will maintain their integrity when heated is possible.
Downloads
References
Lyubych, V. V. (2017). The production of donor blood preparations in Ukraine and its quality control. Hematolohiia i perelyvannia krovi, Iss. 39, рр. 99-104 (in Ukrainian).
Lagerberg, J. W. (2021). Frozen blood reserves. In Cryopreservation and freeze-drying protocols. Methods in molecular biology, vol. 2180 (pp. 523-538). New York: Humana. https://doi.org/10.1007/978-1-0716-0783-1_26
Semionova, E. A., Yershova, N. A., Yershov, S. S., Orlova, N. V. & Shpakova, N. M. (2016). Peculiarities of posthypertonic lysis in erythrocytes of several mammals. Probl. Cryobiol. Cryomed., 26, No. 1, pp. 73-83. https://doi.org/10.15407/cryo26.01.073
Chabanenko, O. O., Yershova, N. A., Orlova, N. V. & Shpakova, N. M. (2019). Impact of amphiphilic compounds on post-hypertonic shock of human erythrocytes. Visn. Kharkiv. nats. un-tu im. V.N. Karazina. Ser. Biol., 33, pp. 84-90 (in Russian). https://doi.org/10.26565/2075-5457-2019-33-11
Chabanenko, O. O., Yershova, N. A. & Shpakova, N. M. (2020). Effect of amphiphilic compounds on posthypertonic lysis of erythrocytes. Probl. Cryobiol. Cryomed., 30, No. 3, pp. 286. https://doi.org/10.15407/cryo30.03.286
Semionova, E. A., Chabanenko, E.A., Orlova, N. V., Zubov, P. M. & Shpakova, N. M. (2017). About mechanism of antihemolitic action of chlorpromazine under posthypertonic stress in erythrocytes. Probl. Cryobiol. Cryomed., 27, No. 3, pp. 219-229. https://doi.org/10.15407/cryo27.03.219
Kovalenko, S. E., Alekseyeva, L. I., Kuleshova, L. G., Kovalenko, І. F., Kholodnyy, V. S., Gordiyenko, E. I. & Gordiyenko, O. I. (2006). Possible mechanisms of chlorpromazine antihemolytic effect. Probl. Cryobiol., 16, No. 2, рр. 137-146.
Manaargadoo-Catin, M., Ali-Cherif, A., Pougnas, J.-L. & Perrin, C. (2016). Hemolysis by surfactant — a review. Adv. Colloid Interface Sci., 228, рр. 1-16. https://doi.org/10.1016/j.cis.2015.10.011
Isomaa, B., Hägerstrand, H. & Paatero, G. (1987). Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta, 899, No. 1, pp. 93-103. https://doi.org/10.1016/0005-2736(87)90243-4
Manisha mishra, Muthuprasanna, P., Surya prabha, K., Sobhita rani, P., Satish babu, I. A., Sarath Chan - diran, I., Arunachalam, G. & Shalini, S. (2009). Basics and potential applications of surfactants — A review. Int. J. PharmTech Res., 1, No. 4, pp. 1354-1365.
Babajanzadeh, B., Sherizadeh, S. & Ranji, H. (2019). Detergents and surfactants: a brief review. Open. Access. J. Sci., 3, No. 3, pp. 94-99. https://doi.org/10.15406/oajs.2019.03.00138
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.