Influence of nanobiocomposites on the exopolysaccharide matrix of Bacillus strains

Authors

  • L.A. Safronova Danylo Zabolotny Institute of Microbiology and Virology
  • S.I. Voychuk Danylo Zabolotny Institute of Microbiology and Virology
  • O.S. Brovarska Danylo Zabolotny Institute of Microbiology and Virology

DOI:

https://doi.org/10.15407/dopovidi2020.08.081

Keywords:

Bacillus strains, nanobiocomposites, polysaccharide matrix, prebiotics, probiotics

Abstract

The effect of nanobiocomposites of carrageenan and galactomannan — perspective prebiotics on the formation of the extracellular polysaccharide complexes of Bacillus amyloliquefaciens subsp. plantarum UCM B-5139 and UCM B-5140 probiotic strains is studied. Analysis of data showed that bacterial strains had differences in the content of various sugar residues within their exopolysaccharide matrices. Both compounds, carrageenan and galactomannan, and their nanocomposites showed a potency to change the content of the extracellular matrix of bacilli probiotic cells. The effect of these compounds depended, presumably, on the natural structural properties of polysaccharides of these strains. However, the synthesis of extracellular polysaccharides by Bacillus probiotic strains was not bloc ked in the presence of the investigated nanocomposites. The obtained results indicate the possible dual (direct and indirect) action of polysaccharides and their nanocomposites in case of their use as the prebiotic components of synbiotic preparations: through the direct biologi cal action on the properties of the mammalian epithelial cells or gut microflora, and indirectly through the changes of properties of the extracellular polysaccharide matrix of probiotic strains.

Downloads

Download data is not yet available.

References

Markowiak, P. & Śliżewska, K. (2017), Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients, 9, 1021. https://doi.org/10.3390/nu9091021

Rostami, F. M., Mousavi, H., Mousavi, M. R. N. & Shahsafi, M. (2018). Efficacy of probiotics in prevention and treatment of infectious diseases. Clin. Microbiol. Newsletter, 40, No. 12, pp. 97-103. https://doi.org/10.1016/j.clinmicnews.2018.06.001

Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufmann, P., Karakan, T., Khan, A. G., Kim, N., De Paula, J. A., Ramakrishna, B., Shanahan, F., Szajewska, H., Thomson, A. & Le Mair, A. (2017). WGO Practice Guideline — Probiotics and prebiotics. Milwaukee: WGO.

Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C. & Panwar, H. (2017). Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol., 8, 1490. https://doi.org/10.3389/fmicb.2017.01490

Safronova, L. A., Zelena, L. B., Klochko, V. V. & Reva, O. N. (2012). Does the applicability of Bacillus strains in probiotics rely upon their taxonomy? Can. J. Microbiol., 58, No. 10, pp. 212-219. https://doi.org/10.1139/w11-113

Safronova, L. A., Didenko, G. V., Podgorsky, V. S., Sukhov, B. G. & Dzhioev, Yu. P. (2014). Immunomodulatory activity of new galactose-containg polysaccharides. Lik. Sprava, No. 9-10, pp. 64-70 (in Russian).

Lesnichaya, M. V., Sukhov, B. G., Sapozhnikov, A. N., Safronova, L. A., Evseenko, O. V., Ilyash, V. M., Podgorskii, V. S. & Trofimov, B. A. (2014). New nanobiocomposites of ammonium magnesium phosphate and carrageenan as efficient prebiotics. Dokl. Chem., 457, Pt. 2, pp. 144–147. https://doi.org/10.1134/S0012500814080023

Stoitsova, S., Ivanova, R. & Dimova, I. (2004). Lectin-binding epitopes at the surface of Escherichia coli K-12: examination by electron microscopy, with special reference to the presence of a olonic acid-like polymer. J. Basic Microbiol., 44, No. 4, pp. 296-304. https://doi.org/10.1002/jobm.200410350

Stanley, P., Schachter, H. & Taniguchi, N. (2009). N-Glycans. In Varki A., Cummings R.D., Esko J.D. et al. (Eds.). Essentials of Glycobiology. Chapter 8. 2nd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK1917/

Itakura, Y., Nakamura-Tsuruta, S., Kominami, J., Tateno, H. & Hirabayashi, J. (2017). Sugar-binding profiles of chitin-binding lectins from the hevein family: a comprehensive study. Int. J. Mol. Sci., 18, No. 6, 1160. https://doi.org/10.3390/ijms18061160

Sakurai, M. H., Kiyohara, H., Nakahara, Y., Okamoto, K. & Yamada, H. (2002). Galactose-containing polysaccharides from Dictyostelium mucoroides as possible acceptor molecules for cell-type specific galactosyl transferase. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 132, No. 3, pp. 541-549. https://doi.org/10.1016/s1096-4959(02)00067-2

Luft, J. H. (1971). Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat. Rec., 171, pp. 369-416. https://doi.org/10.1002/ar.1091710303

Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C. & Parsek, M. R. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog., 7, No. 1, e1001264. https://doi.org/10.1371/journal.ppat.1001264

Ophir, T. & Gutnick, D. L. (1994). A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol., 60, pp. 740-745.

Vu, B., Chen, M., Crawford, R. J. & Ivanova, E. P. (2009). Bacterial extracellular polysaccharides involved in biofilm formation. Molecules., No. 14, pp. 2535-2554. https://doi.org/10.3390/molecules14072535

Downloads

Published

28.03.2024

How to Cite

Safronova, L. ., Voychuk, . S. ., & Brovarska, O. . (2024). Influence of nanobiocomposites on the exopolysaccharide matrix of Bacillus strains . Reports of the National Academy of Sciences of Ukraine, (8), 81–91. https://doi.org/10.15407/dopovidi2020.08.081