Bioactivity prediction and synthesis of new 3-substituted 5-thiazolylmethylene rhodanines
DOI:
https://doi.org/10.15407/dopovidi2020.05.070Keywords:
antiblastic activity, molecular docking, QSAR-analysis, rhodanines, synthesis, thiazolesAbstract
The virtual screening of a database of Z- and E-isomeric thiazole-containing derivatives of N-methyl-, N-ben zyland N-phenylethyl-substuted rhodanines is performed by regression and classification QSAR models for predicting the antiblastic activity of compounds against Hep-2 cells. The molecular docking method is used to evaluate the affinity of 3-substituted 5-thiazolylmethylene rhodanines to the ATP-binding site of potential target protein, the protein kinase Pim-1. According to the virtual screening results, ten compounds from the database were selected and synthesized by the reaction of N-substituted rhodanines with thiazol-2-carboxaldehydes, thiazol-4-carboxaldehydes and thiazol-5-carboxaldehydes. In vitro study of the compounds with N-substituted rhodanine scaffold showed the cytotoxic activity on the cell culture of human laryngeal adenocarcinoma Hep-2 which was 2.7-10 times lower in comparison with the effect of cisplatin as a reference. The results indicated that the rhodanine derivative with thiazol-2-yl and N-(4-methoxyphenyl)ethyl substituents, as well as rhodanine compound bearing thiazol-4-yl and N-4-methylbenzyl groups, exhibited the most pronounced effects. The toxicity of these compounds evaluated on hydrobiont D. magna was two orders of magnitude lower than that of cisplatin.
Downloads
References
Kaminskyy, D., Kryshchyshyn, A. & Lesyk, R. (2017). Recent developments with rhodanine as a scaffold of drug discovery. Expert Opin. Drug Discov., 12, No. 12, pp. 1233-1252. Doi: https://doi.org/10.1080/17460441.2017.1388370
Sawaguchi, Y., Yamazaki, R., Nishiyama, Y., Sasai, T., Mae, M., Abe, A., Yaegashi, T., Nishiyama, H. & Matsuzaki, T. (2017). Rational design of a potent pan-Pim kinases inhibitor with a rhodanine-benzoimidazole structure. Anticancer Res., 37, No. 8, pp. 4051-4057. Doi: https://doi.org/10.21873/anticanres.11790
Vatolin, S., Phillips, J. G., Jha, B. K., Govindgari, S., Hu J., Grabowski, D., Parker, Y., Lindner, D. J., Zhong, F., Distelhorst, C. W., Smith, M. R., Cotta, C., Xu, Y., Chilakala, S., Kuang, R. R., Tall, S. & Reu, F. J. (2016). Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer. Res., 76, No. 11, pp. 3340-3350. Doi: https://doi.org/10.1158/0008-5472.CAN-15-3099
Li, P., Zhang, W., Jiang, H., Li, Y., Dong, C., Chen, H., Zhang, K. & Du, Z. (2018). Design, synthesis and biological evaluation of benzimidazole-rhodanine conjugates as potent topoisomerase II inhibitors. MedChem- Comm., 9, pp. 1194-1205. Doi: https://doi.org/10.1039/C8MD00278A
Bayindir, S., Caglayan, C., Karaman, M. & Gülcin, İ. (2019). The green synthesis and molecular docking of novel N-substituted rhodanines as effective inhibitors for carbonic anhydrase and acetylcholinesterase enzyme. Bioorg. Chem., 90, 103096. Doi: https://doi.org/10.1016/j.bioorg.2019.103096
Bernardo, P.H., Sivaraman, T., Wan, K.-F., Xu, J., Krishnamoorthy, J., Song, C.M., Tian, L., Chin, J.S.F., Lim, D.S.W., Mok, H.Y.K., Yu, V.C., Tong, J.C. & Chai, C.L.L. (2011). Synthesis of a rhodanine-based compound library targeting Bcl-XL and Mcl-1. Pure Appl. Chem., 83, No. 3, pp. 723-731. Doi: https://doi.org/10.1351/PAC-CON-10-10-29
Ozen, C., Unlusoy, M. C., Aliary, N., Ozturk, M. & Dundar, O. B. (2017). Thiazolidinedione or rhodamine: a study on synthesis and anticancer activity comparison of novel thiazole derivatives. J. Pharm. Pharm. Sci., 20, No. 1, pp. 415-427. Doi: https://doi.org/10.18433/J38P9R
Xia, Z., Knaak, C., Ma, J., Beharry, Z. M., Mclnnes, C., Wang, W., Kraft, A. S. & Smith, C. D. (2009). Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J. Med. Chem., 52, No. 1, pp. 74-86. Doi: https://doi.org/10.1021/jm800937p
Zhang, X., Song, M., Kundu, J. K., Lee, M.-H. & Liu, Z.-Z. (2018). PIM kinase as an executional target in cancer. J. Cancer Prev., 23, No. 3, pp. 109-116. Doi: https://doi.org/10.15430/JCP.2018.23.3.109
Choi, J. L., Cho, S. I., Do, N. Y., Kang, C. Y. & Lim, S. C. (2010). Clinical significance of the expression of galectin-3 and Pim-1 in laryngeal squamous cell carcinoma. J. Otolaryngol. Head Neck Surg., 39, No. 1, pp. 28-34.
Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K. & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 19, No. 14, pp. 1639-1662. Doi: https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
Pogacic, V., Bullock, A. N., Fedorov, O., Filippakopoulos, P., Gasser, C., Biondi, A., Meyer-Monard, S., Knapp, S. & Schwaller, J. (2007). Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res., 67, No. 14, pp. 6916-6924. Doi: https://doi.org/10.1158/0008-5472.CAN-07-0320
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res., 28, No. 1, pp. 235-242. Doi: https://doi.org/10.1093/nar/28.1.235
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E. & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform., 4, No. 1, 17. Doi: https://doi.org/10.1186/1758-2946-4-17
Sanner, M. F. (1999). Python: a programming language for software integration and development. J. Mol. Graph. Model., 17, pp. 57-61.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.