Sintering of superhard instrumental-purpose composites of the Bl group in the cBN-NbC-Al system under high pressure and high temperature conditions

Authors

  • D.A. Stratiichuk V. Bakul Institute for Superhard Materials
  • V.Z. Turkevich V. Bakul Institute for Superhard Materials
  • K.V. Slipchenko V. Bakul Institute for Superhard Materials
  • V.M. Bushlya Lund University
  • N.M. Bilyavyna Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.15407/dopovidi2020.02.037

Keywords:

cBN, cutting ceramics, high pressures, niobium carbide, superhard materials

Abstract

The processes of sintering of superhard composite materials of the BL group in the cBN—NbC—Al system under high pressure conditions (7.7 GPa) in the temperature range of 1800—2350 ºC with the selected volume ratio of the initial components cBN : NbC : Al = 60 : 35 : 5 are studied. According to the XRD analysis, it is established that, starting from 1800 ºC, a chemical interaction occurs between the components resulting in the formation of niobium diboride (NbB2) in the amount of 7 wt %, as well as an insignificant amount of aluminium oxide, AlN and AlB2 as a result of liquid-phase reactions using aluminium. All those newly formed compounds are arranged in the intergranular space and at triple grain junctions representing the binding phases of the basic ceramicmatrix composite cBN—NbC. Based on the results of ultrasound diagnostics, it is shown that Young’s modulus and the shear modulus are at a maximum for ceramics obtained at ТSINT.= 1950 ºC, and a further increase in the sintering temperature leads to reduced stress-strain properties. Superhard ceramic plates with high stressstrain properties can be used for the high-speed turning of tempered (up to 60 HRC) and high-alloyed (including Inconel) steel at high temperatures in the cutting area.

Downloads

Download data is not yet available.

References

Riedel R. (Ed.). (2000). Handbook of ceramic hard materials. Weinheim: Wiley. Doi: https://doi.org/10.1002/9783527618217

McKie, A., Winzer, J., Sigalas, I., Herrmann, M., Weiler, L., Rödel, J. & Can, N. (2011). Mechanical properties of cBN-Al composite materials. Ceram. Int., 37, No. 1, pp. 1-8. Doi: https://doi.org/10.1016/j.ceramint.2010.07.034

Gutnichenko, O., Bushlya, V., Zhou, J. & Ståhl, J.-E. (2017). Tool wear and machining dynamics when turning high chromium white cast iron with pcBN tools. Wear, 390-391, pp. 253-269. Doi: https://doi.org/10.1016/j.wear.2017.08.005

Bushlya, V., Bjerke, A., Turkevich, V. Z., Lenrick, F., Petrusha, I. A., Cherednichenko, K. A. & Ståhl, J.-E. (2019). On chemical and diffusional interactions between PCBN and superalloy Inconel 718: Imitational experiments. J. Eur. Ceram. Soc., 39, No. 8, pp. 2658-2665. Doi: https://doi.org/10.1016/j.jeurceramsoc.2019.03.002

Seco Tools AB. SecomaxTM cBN170. Retrieved from https://www.secotools.com

Element Six. Retrieved from https://www.e6.com

Slipchenko, K., Turkevich, V., Petrusha, I., Bushlya, V. & Ståhl, J.-E. (2018). Superhard pcBN materials with chromium compounds as a binder. Procedia Manuf., 25, pp. 322-329. Doi: https://doi.org/10.1016/j.promfg.2018.06.090

Klimczyk, P., Benko, E., Lawniczak-Jablonska, K., Piskorska, E., Heinonen, M., Ormaniec, A., Gorczynska-Zawislan, W. & Urbanovich, V. S. (2004). Cubic boron nitride — Ti/TiN composites: hardness and phase equilibrium as function of temperature. J. Alloys Compd., 382, No. 1-2, pp. 195-205. Doi: https://doi.org/10.1016/j.jallcom.2004.04.140

Benko, E., Stanisław, J. S., Królicka, B., Wyczesany, A. & Barr, T. L. (1999). сBN—TiN, cBN—TiC composites: chemical equilibria, microstructure and hardness mechanical investigations. Diam. Relat. Mater., 8, No. 10, pp. 1838-1846. Doi: https://doi.org/10.1016/S0925-9635(99)00131-4

Rong, X. Z., Tsurumi, T., Fukunaga, O. & Yano, T. (2002). High-pressure sintering of cBN—TiN—Al composite for cutting tool application. Diam. Relat. Mater., 11, No. 2, pp. 280-286. Doi: https://doi.org/10.1016/S0925-9635(01)00692-6

Slipchenko, K. V., Petrusha, I. A., Stratiichuk, D. A. & Turkevich, V. Z. (2018). The influence of the VC-Al additive on wear resistance of cBN- based composites. J. Superhard Mater., 40, No. 3, pp. 226-227. Doi: https://doi.org/10.3103/S1063457618030115

Piskorska, E., Lawniczak-Jablonska, K., Demchenko, I. N., Minikayev, R., Benko, E., Klimczyk, P., Wit kowska, A., Welter, E. & Heinonen, M. (2004). Characterization of the c-BN/TiC, Ti3SiC2 systems by element selective spectroscopy. J. Alloys Compd., 382, No. 1-2, pp. 187-194. Doi: https://doi.org/10.1016/j.jallcom.2004.05.043

Published

28.03.2024

How to Cite

Stratiichuk, D. ., Turkevich, V., Slipchenko, K. ., Bushlya, V. ., & Bilyavyna, N. . (2024). Sintering of superhard instrumental-purpose composites of the Bl group in the cBN-NbC-Al system under high pressure and high temperature conditions . Reports of the National Academy of Sciences of Ukraine, (2), 37–44. https://doi.org/10.15407/dopovidi2020.02.037

Most read articles by the same author(s)