Cholesterol and its esters in the bile of rats in tetracyclineinduced hepatosis and under the using of milk phospholipids

Authors

  • V.A. Tomchuk National University of Life and Environmental Sciences of Ukraine
  • V.A. Gryshchenko National University of Life and Environmental Sciences of Ukraine
  • S.P. Veselsky Taras Shevchenko National University of Kyiv
  • Ye.M. Reshetnik Taras Shevchenko National University of Kyiv
  • M.Y. Yevtushenko National University of Life and Environmental Sciences of Ukraine

DOI:

https://doi.org/10.15407/dopovidi2020.12.093

Keywords:

bile, cholesterol, cholesterol’s esters, milk phospholipids, rats, steatosis, tetracycline

Abstract

The increase of disorders of the cholesterol metabolism and the bile formation determines the need of the search for possible substances correcting the cholesterol metabolism in the liver. It is found that, in laboratory rats with an experimental drug form of steatosis, the excretion of cholesterol and, especially, cholesterol esters to the bile ducts is inhibited, and their ratio in bile is significantly impaired. The use of bioadditive “FLP-MD” made on milk phospholipids has a corrective effect on the concentration of cholesterol and its esters in bile of rats with tetracycline-induced steatosis. This allows us to recommend bioadditive “FLP-MD” made on milk phospholipids to improve the cholesterol metabolism in patients with clinical cases of drug-induced liver damage.

Downloads

Download data is not yet available.

References

Zhang, Q.-Q. & Lu, L.-G. (2015). Nonalcoholic fatty liver disease: dyslipidemia, risk for cardiovascular complications, and treatment strategy. J. Clin. Transl. Hepatol., 3, No. 1, pp. 78-84. https://doi.org/10.14218/JCTH.2014.00037

Wang, Y., Ding, W.-X. & Li, T. (2019). Cholesterol and bile acid-mediated regulation of autophagy in fatty liver diseases and atherosclerosis. Biochim. Biophys. Acta., 1863, No. 7, pp. 726-733. https://doi.org/10.1016/j.bbalip.2018.04.005

Püschel, G.P. & Henkel, J. (2018). Dietary cholesterol does not break your heart but kills your liver. Porto Biomed. J., 3, No. 1, e12. https://doi.org/10.1016/j. pbj.0000000000000012

Kaiser, T., Kinny-Köster, B., Bartels, M., Berg, T., Scholz, M., Engelmann, C., Seehofer, D., Becker, S., Ceglarek, U. & Thiery, J. (2017). Cholesterol esterification in plasma as a biomarker for liver function and prediction of mortality. BMC Gastroenterol., 17, No. 1, 57. https://doi.org/10.1186/s12876-017-0614-9

Dikkers, A. & Tietge, U.J.F. (2010). Biliary cholesterol secretion: More than a simple ABC. World J. Gastroenterol., 16, No. 47, pp. 5936-5945. https://doi.org/10.3748/wjg.v16.i47.5936

Rudling, M., Laskar, A. & Straniero, S. (2019). Gallbladder bile supersaturated with cholesterol in gallstone patients preferentially develops from shortage of bile acids. J. Lipid Res., 60, No. 3, pp. 498-505. https://doi.org/10.1194/jlr.S091199

Gryshchenko, V. A. (2019). Blood and acid composition of blood and biles in calves at enteropatology and application of milk phospholipids. Ukr. J. Vet. Sci., 10, No. 4, pp. 36-42 (in Ukranian). https://doi.org/10.31548/ujvs2019.04.005

Varganova, D. L., Pavlov, C. S., Casazza, G., Nikolova, D. & Gluud, C. (2019). Essential phospholipids for people with non-alcoholic fatty liver disease. Cochrane Database Syst Rev., No. 4, CD013301. https://doi.org/10.1002/14651858.CD013301

Maev, I. V., Samsonov, A. A., Palgova, L. K., Pavlov, C. S., Shirokova, E. N., Vovk, E. I. & Starostin, K. M. (2020). Effectiveness of phosphatidylcholine as adjunctive therapy in improving liver function tests in patients with non-alcoholic fatty liver disease and metabolic comorbidities: real-life observational study from Russia. BMJ Open Gastroenterol., 7, No. 1, e000368. https://doi.org/10.1136/bmjgast-2019-000368

Jesch, E. D. & Carr, T. P. (2017). Food ingredients that inhibit cholesterol absorption. Prev. Nutr. Food Sci., 22, No. 2, pp.67-80. https://doi.org/10.3746/pnf.2017.22.2.67

Zhang, P., Chen, Y., Cheng, Y., Hertervig, E., Ohlsson, L., Nilsson, A. & Duan, R.-D. (2014). Alkaline sphingomyelinase (NPP7) promotes cholesterol absorption by affecting sphingomyelin levels in the gut: A study with NPP7 knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol., 306, No. 10, pp. G903-G908. https://doi.org/10.1152/ajpgi.00319.2013

Gryshchenko, V., Danchenko, O. & Musiychuk, V. (2019). Modification of modeling methodof toxic dystrophy of liver in rats. In Nadykto, V. (Eds). Modern development paths of agricultural production (pp. 689- 697). Cham: Springer. https://doi.org/10.1007/978-3-030-14918-5_67

Pаt. 86516 UA, ICP 61К 35/20, А23К 1/00. Veterinary bioactive addidition of liposomal form and method of reparative therapy in hepatology, Melnychuk, D. O., Gryshchenko, V. A. & Lytvynenko, O. M., Publ. 27.04.2009 (in Ukrainian).

Pat. 99031324 UA, IPC А61В5/14, Method of preparation of samples of bioridines to determine the content of substances of lipid nature, Vesel’s’kyy, S. P., Lyashchenko, P. S., Kostenko, S. I., Horenko, Z. A. & Ku rovs’ka, L. F., Publ. 15.02.2001 (in Ukrainian).

Schulze, R. J., Micah, B., Schott, M. B., Carol, A., Casey, C. A., Pamela, L., Tuma, P. L., Mark, A. & McNiven, M. A. (2019). The cell biology of the hepatocyte: A membrane trafficking machine. J. Cell Biol., 218, No. 7, pp. 2096-2112. https://doi.org/10.1083/jcb.201903090

Published

28.03.2024

How to Cite

Tomchuk, V. ., Gryshchenko, . V. ., Veselsky, S. ., Reshetnik, Y. ., & Yevtushenko , M. . (2024). Cholesterol and its esters in the bile of rats in tetracyclineinduced hepatosis and under the using of milk phospholipids . Reports of the National Academy of Sciences of Ukraine, (12), 93–99. https://doi.org/10.15407/dopovidi2020.12.093