Vibrations of a cylindrical piezoshell filled with a fluid

Authors

  • O.V. Boryseiko Taras Shevchenko National University of Kyiv
  • V.I. Denysenko Kyiv National University of Trade and Economics
  • Yu.F. Didenko Kyiv National University of Trade and Economics

DOI:

https://doi.org/10.15407/dopovidi2020.11.031

Keywords:

a piezoceramic shell, axisymmetric vibration, external pressure, rigid plate, small vibrations of liquid

Abstract

Stationary oscillations of a piezoceramic cylindrical shell with thickness polarization under the action of a time-harmonic mechanical load in the form of an external pressure are considered. The shell has a finite length and is closed at the ends with rigid plates. The inner volume of the shell is filled with a non-viscous compressible liquid. A continuous thin electrode coating is applied to the cylindrical surfaces of the shell. Surface electrodes are considered open. The equations of axisymmetric oscillations and the corresponding boundary conditions at the ends are written in the problem statement for the shell. A problem is formulated also for determining the motion in the form of small oscillations of a liquid inside the shell, as well as the boundary conditions for the equality of velocities of liquid particles and the shell on their contact surfaces. An analytic expression is given for determining the distribution of the thickness component of the electric field strength, which arises due to the deformation of the shell element, depending on the frequency of oscillations of the external mechanical load. The results of numerical calculations are shown.

Downloads

References

Grinchenko, V. T., Vovk, I. V. & Matsypura, V. T. (2018). Acoustic Wave Problems. Danbury: Begell House, 439 p.

Grinchenko, V. T., Ulitko, A. F. & Shulga, N. A. (1989). Electroelasticity. Mechanics of connected fields in structural elements. T. 5. Kyiv: Naukova Dumka (in Russian).

On stability of cylindrical shells from composites beyond the elasticity level Zhongnan Gongye Daxue Xuebao. 29, No. 5, pp. 24-31.

Babich, I. Y., Semenyuk, N. P. & Boriseiko, A. V. (1999). Stability and efficient design of cylindrical shells of metal composites subject to combination loading. Int. Appl. Mech., 35, No. 6, pp. 595-01. https://doi.org/10.1007/BF02682183

Boriseyko, V. A., Grinchenko, V. T. & Ulitko, A. F. (1976). Relations of electroelasticity for piezoceramic shells of rotation. Appl. Mech., 12, No. 2, pp. 26-33 (in Russian). https://doi.org/10.1007/BF00901881

Rayleigh, D. (1955). Theory of sound. T. 2. Moscow: Gostekhizdat (in Russian).

Ulitko, A. F. (1975). To the theory of oscillations of piezoceramic bodies. Thermal stresses in structural elements, No. 15, pp. 90-99 (in Russian).

Mason, W. (Ed.). (1966). Piezoelectric and piezomagnetic materials and their application in converters. Physical acoustics. T. 1-4. Moscow: Mir, pp. 204-326 (in Russian).

Published

28.03.2024

How to Cite

Boryseiko, O. ., Denysenko, V. ., & Didenko, Y. . (2024). Vibrations of a cylindrical piezoshell filled with a fluid . Reports of the National Academy of Sciences of Ukraine, (11), 31–38. https://doi.org/10.15407/dopovidi2020.11.031