Synthesis and structural features of slab structure SrLa1−xSmxInO4
DOI:
https://doi.org/10.15407/dopovidi2019.01.072Keywords:
indates SrLa1−xSmxInO4, isomorphism, slab perovskite-like structure, solid solutions, X-ray powder diffractionAbstract
The substitution conditions of La by Sm atoms in the slab perovskite-like structure (SPS) of SrLa1−xSmxInO4 (0 ≤ x ≤ 0.4) indates are determined. Orthorhombic (sp. gr. Pbca) crystal structures of SrLa1−xSmxInO4 phases with x = 0.2 and 0.4 are determined, by using the X-ray powder diffraction methods. Analysis of the obtained data has shown that, in a case of the substitution of La atoms by Sm atoms in SPS of SrLa1−xSmxInO4, a gradual reduction of the deformation degree of interblock (Sr, La, Sm)О9 polyhedra and the average In—O distance in InO6 octahedra takes place. Length of (Sr, La, Sm)–О2 interblock bonds is significantly increased. Increase in the distance between perovskite-like blocks reduces a durability of their bonding. This results in the destruction of SPS and a limitation of the area of SrLa1−xSmxInO4 solid solutions with SPS.
Downloads
References
Alexandrov, K. C. & Beznosikov, B. V. (2004). Perovskites. Present and future. Novosibirsk: Izd-vo SO RAN (in Russian).
Schaak, R. E. & Mallouk, T. E. (2002). Perovskites by design: a toolbox of solid-state reactions. Chem. Mater., 14, No. 4, pp. 1455-1471. doi: https://doi.org/10.1021/cm010689m
Kato, S., Ogasawara, M., Sugai, M. & Nakata, S. (2002). Synthesis and oxide ion conductivity of new layered perovskite La1−xSr1+xInO4−d. Solid state ionics, 149, No. 1-2, pp. 53-57. doi: https://doi.org/10.1016/S0167-2738(02)00138-8
Titov, Yu., Nedilko, S. G., Chornii, V., Scherbatskii, V., Belyavina, N., Markiv, V. & Polubinskii, V. (2015). Crystal structure and luminescence of layered perovskites Sr3LnInSnO8. Solid State Phenomena, 230, pp. 67-72. doi: https://doi.org/10.4028/www.scientific.net/SSP.230.67
Kim, I. S., Nakamura, T. & Itoh, M. (1993). Humidity sensing effects of the layered oxides SrO·(LaScO3)n (n = 1,2, ). J. Ceram. Soc. Jap., 101, No. 7, pp. 800-803. doi: https://doi.org/10.2109/jcersj.101.800
Yang, H. M., Shi, J. X. & Gong, M. L. (2006). A new luminescent material, Sr2SnO4 : Eu3+. J. Alloys Compd., 415, No. 1-2, pp. 213-215. doi: https://doi.org/10.1016/j.jallcom.2005.04.221
Ueda, K., Yamashita, T., Nakayashiki, K., Goto, K., Maeda, T., Furui, K., Ozaki, K., Nakachi, Y., Nakamura, S., Fujisawa, M. & Miyazaki, T. (2006). Green, orange, and magenta luminescence in strontium stannates with perovskite-related structures. Jap. J. Appl. Phys., 45, No. 9A, pp. 6981-6983. doi: https://doi.org/10.1143/JJAP.45.6981
Dashevskyi, M., Boshko, O., Nakonechna, O. & Belyavina, N. (2017). Phase transformations in equiatomic Y—Cu powder mixture at mechanical milling. Metallofiz. Noveishie Tekhnol., 39, No. 4, pp. 541-552. doi: https://doi.org/10.15407/mfint.39.04.0541
Titov, Y. O., Belyavina, N. M., Markiv, V. Ya., Slobodyanik, M. S. & Krayevska, Ya. A. (2009). Synthesis and crystal structure of BaLaInO4 and SrLnInO4 (Ln = La, Pr). Dopov. Nac. akad. nauk Ukr., No. 10, pp. 160-166 (in Ukrainian).
Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and halcogenides. Acta Crystallogr., A32, pp. 751-767. doi: https://doi.org/10.1107/S0567739476001551
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.