Impact of heavy metals on germination and seedling growth of Triticale plants after seed priming with zeatin
DOI:
https://doi.org/10.15407/dopovidi2025.03.083Keywords:
heavy metal, Triticale, germination, growth, priming, zeatinAbstract
The effect of heavy metal compounds (cadmium, cobalt, manganese) on germination and seedlings growth of Triticale (×Triticosecale Wittmack, cv. ADM9 Synthetic) after pre-sowing seed priming with cytokinin was studied.
Contamination of agricultural land with pollutants of anthropogenic origin has become a particular threat in Ukraine, where the content of heavy metal compounds in soil has increased significantly as a result of military actions. Plants, especially cereals, absorb heavy metals and accumulate them in themselves, which prevents their growth and poses a health hazard to consumers. One way to mitigate the negative effects of heavy metals on plants is an
application of exogenous phytohormones. In the present research, the effect of CdCl2, Co(NO3)2 and MnSO4 solutions at concentrations of 50 μM, 100 μM, 250 μM on germination and growth of Triticale seedlings after priming seeds with a zeatin solution (10−6 M) was studied.
The experiments showed that heavy metals negatively affect the germination of Triticale seeds and the further seedling growth. They had a particularly detrimental effect on the development of the root system. Cadmium, cobalt and manganese at different concentrations altered the final germination rate and the seedling linear parameters differ- ently. Cadmium demonstrated the most toxic effect on seedling growth whereas manganese was not toxic at low con- centrations. All the elements studied had a harmful impact at a concentration of 250 μM. The results of seed priming with cytokinins to mitigate the inhibitory effect of heavy metals on Triticale plant growth depended on the nature of the metal and its concentration. The obatined data can be taken into account in the future in developing experimental designs for continuing research aimed at developing biotechnologies to overcome the consequences of soil contamina- tion with cadmium, cobalt and manganese compounds.
Downloads
References
Leal Filho, W., Eustachio, J. H. P. P., Fedoruk, M. & Lisovska, T. (2024). War in Ukraine: an overview of environmental impacts and consequences for human health. Front. Sustain. Resour. Manag., 3, 1423444. https://doi.org/10.3389/fsrma.2024.1423444
Shebanina, O., Kormyshkin, I., Bondar, A., Bulba, I. & Ualkhanov B. (2023). Ukrainian soil pollution before and after the Russian invasion. Int. J. Environ. Stud., 81, No. 1, pp. 208-215. https://doi.org/10.1080/00207233.2023
.2245288
Vasilachi, I. C., Stoleru, V. & Gavrilescu, M. (2023). Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils. Agriculture, 13, No. 10, 1983. https://doi.org/10.3390/agriculture13101983
Zhang, L. & Gao, B. (2021). Effect of isosteviol on wheat seed germination and seedling growth under cadmium stress. Plants, 10, No. 9, 1779. https://doi.org/10.3390/plants10091779
Carvalho, M. E. A., Agathokleous, E., Nogueira, M. L., Brunetto, G., Brown, P. H. & Azevedo, R. A. (2023). Neutral-to-positive cadmium effects on germination and seedling vigor, with and without seed priming. J. Hazard. Mater., 448, 130813. https://doi.org/10.1016/j.jhazmat.20223.130813
Hu, X., Wei, X., Ling, J. & Chen, J. (2021). Cobalt: an essential micronutrient for plant growth? Front. Plant Sci., 12, 768523. https://doi.org/10.3389/fpls.2021.768523
Alejandro, S., Höller, S., Meier, B. & Peiter, E. (2020). Manganese in plants: from acquisition to subcellular allocation. Front. Plant Sci., 11, 300. https://doi.org/10.3389/fpls.2020.00300
Rizvi, A., Zaidi, A., Ameen, F., Ahmed, B., AlKahtani, M. D. F. & Khan, M. S. (2020). Heavy metal induced stress on wheat: phytotoxicity and microbiological management. RSC Adv., 10, No. 63, pp. 38379-38403. https:// doi.org/10.1039/d0ra05610c
Rahman, S. U., Li, Y., Hussain, S., Hussain, B., Khan, W. D., Riaz, L., Ashraf, M. N., Khaliq, M. A., Du, Z. & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review. Ecol. Indic., 146, 109844. https://doi.org/10.1016/j.ecolind.2022.109844
Kosakivska, I. V., Vedenicheva, N. P., Babenko, L. M., Voytenko, L. V., Romanenko, K. O. & Vasyuk, V. A. (2022). Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol. Biol. Rep., 49, No. 1, pp. 617-628. https://doi.org/10.1007/s11033-021-06802-2
Vedenicheva, N. & Kosakivska, I. (2024). The regulatory role of cytokinins in adaptive responses of cereal plants. In Yastreb, T. O., Kolupaev, Y. E., Yemets, A. I., Blume, Y. B. (Eds.). Regulation of adaptive responses in plants (pp. 83-110). New York: Nova Science Publishers. https://doi.org/10.52305/TXQB2084
Emamverdian, A., Ding, Y., Alyemeni, M. N., Barker, J., Liu, G., Li, Y., Mokhberdoran, F. & Ahmad, P. (2022). Benzylaminopurine and abscisic acid mitigates cadmium and copper toxicity by boosting plant growth, antioxidant capacity, reducing metal accumulation and translocation in bamboo [Pleioblastus pygmaeus (Miq.)] plants. Antioxidants, 11, No. 12, 2328. https://doi.org/10.3390/antiox11122328
Zhou, M., Ghnaya, T., Dailly, H., Cui, G., Vanpee, B., Han, R. & Lutts, S. (2019). The cytokinin trans-zeatine riboside increased resistance to heavy metals in the halophyte plant species Kosteletzkya pentacarpos in the absence but not in the presence of NaCl. Chemosphere, 233, pp. 954-965. https://doi.org/10.1016/j. chemosphere.2019.06.023
Nguyen, N. H., Nguyen, Q. T., Dang, D. H. & Emery, R. J. N. (2023). Phytohormones enhance heavy metal responses in Euglena gracilis: Evidence from uptake of Ni, Pb and Cd and linkages to hormonomic and metabolomic dynamics. Environ. Pollut., 320, 121094. https://doi.org/10/1016/j.envpol.2023.121094
Kamran, M., Danish, M., Saleem, M.H., Malik, Z., Parveen, A., Abbasi, G.H., Jamil, M., Ali, S., Afzal, S., Riaz, M., Rizwan, M., Ali, M. & Zhou, Y. (2021). Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere, 263, 128169. https://doi.org/10.1016/j.chemosphere.2020.128169
Pirych, A. V., Fedorenko, M. V., Fedorenko, I. V., Kuzmenko, Ye. A. & Blyzniuk, R. M. (2023). Adaptive potential of winter triticale breeding lines (×Triticosecale Wittmack) in Forest-Steppe of Ukraine. Grain Crops, 7, No. 1, pp. 28-36 (in Ukrainian). https://doi.org/10.31867/2523-4544/0255
Arseniuk, E. (2015). Triticale abiotic stresses — an overview. In Eudes, F. (Ed.). Triticale. (pp. 69-80). Cham: Springer. https://doi.org/10.1007/978-3-319-22551-7_4
Brezoczki, V. M. & Filip, G. M. (2017). The heavy metal ions (Cu2+, Zn2+, Cd+) toxic compounds influence
on triticale plants growth. IOP Conf. Ser.: Mater. Sci. Eng., 200, 012025. https://doi.org/10.1088/1757- 899X/200/1/012025
Sethy, S. K. & Ghosh, S. (2013). Effect of heavy metals on germination of seeds. J. Nat. Sci. Biol. Med., 4, No. 2, pp. 272-275. https://doi.org/10.4103/0976-9668.116964
Horielova, E. I., Shkliarevskyi, M. A. & Kolupaev, Yu. E. (2020). The content of secondary metabolites in triti- cale seedlings of different genotypes under cold hardening conditions. Fiziol. rast. genet., 52, No. 5, pp. 401-411 (in Ukrainian). https://doi.org/10.15407/frg2020.05.401
Rybalka, O. I., Morgun, V. V., Polishchuk, S. S., Priymachuk, M. I., Chervonis, M. V. & Morgun, B. V. (2025). Features of winter triticale (× Triticosecale Wittmack) breeding. Fiziol. rast. genet., 57, No. 1, pp. 27-42 (in Ukrainian). https://doi.org/10.15407/frg2025.01.027
Michas, G., Giannakopoulos, E., Petropoulos, G., Kargiotidou, A., Vlachostergios, D & Tziouvalekas, M. (2020). The growth of Triticale (Triticosecale Wittm.) in multi-metal contaminated soils by use of zeolite: a pilot plant study. Curr. Environ. Manag., 7, No. 1, p. 55-66. 10.2174/2666214007666200818113057
Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2019). Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environ. Geochem. Health, 41, No. 4, pp. 1813-1831. https://doi.org/10.1007/s10653-017-0005-8
Ahsan, N., Lee, S.-H., Lee, D.-G., Lee, H., Lee, S. W., Bahk, J. D. & Lee, B.-H. (2007). Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C. R. Biol., 330, No. 10, pp. 735-746. https://doi.org/10.1016/j.crvi.2007.08.001
Salam, A., Rehman, M., Qi, J., Khan, A. R., Yang, S., Zeeshan, M., Ulhassan, Z., Afridi, M. S., Yang, C., Chen, N., Fan, X. & Gan, Y. (2024). Cobalt stress induces photosynthetic and ultrastructural distortion by disrupting cellular redox homeostasis in maize. Environ. Exp. Bot., 217, 105562. https://doi.org/10.1016/j. envexpbot.2023.105562
Parveen, A., Atif, M., Akhtar, F., Perveen, S., Zafar, S., Hafeez, K. & Yasmeen, N. (2024). Elucidating the protective role of manganese seed priming in mitigating lead-induced oxidative stress: enhancements in growth, grain yield, and antioxidant activities of wheat. Environ. Sci. Pollut. Res., 31, No. 55, pp. 64228-64247. https://doi.org/10.1007/s11356-024-35440-x
Mughal, N., Shoaib, N., Chen, J., Li, Y., He, Y., Fu, M., Li, X., He, Y., Guo, J., Deng, J., Yang, W. & Liu, J. (2024). Adaptive roles of cytokinins in enhancing plant resilience and yield against environmental stressors. Chemosphere, 364, 143189. https://doi.org/10.1016/j.chemosphere.2024.143189
Yu, Y., Li, Y., Yan, Z. & Duan, X. (2022). The role of cytokinins in plant under salt stress. J. Plant Growth Regul., 41, pp. 2279-229. https://doi.org/10.1007/s00344-021-10441-z
Zaheer, M. S., Raza, M. A. S., Saleem, M. F., Erinle, K. O., Iqbal, R. & Ahmad, S. (2019). Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Commun. Soil Sci. Plant Anal., 50, No. 20, pp. 2521-2533. https://doi.org/10.1080/00103624.2019.1667376
Prerostova, S., Rezek, J., Jarosova, J., Lacek, J., Dobrev, P., Marsik, P., Gaudinova, A., Knirsch, V., Dolezal, K., Plihalova, L., Vanek, T., Kieber, J. & Vankova, R. (2023). Cytokinins act synergistically with heat acclimation to enhance rice thermotolerance affecting hormonal dynamics, gene expression and volatile emission. Plant Physiol. Biochem., 198, 107683. https://doi.org/10.1016/j.plaphy.2023.107683
Rhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y. & Hasanuzzaman, M. (2021). Seed priming with phytohormones: an effective approach for the mitigation of abiotic stress. Plants, 10, No. 1, 37. https://doi.org/10.3390/plants10010037
Bajwa, A. A., Farooq, M. & Nawaz, A. (2018). Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants, 24, pp. 239- 249. https://doi.org/10.1007/s12298-018-0512-9
Nimir, N. E. A., Lu, S., Zhou, G., Guo, W., Ma, B. & Wang, Y. (2015). Comparative effects of gibberellic acid, kinetin and salicylic acid on emergence, seedling growth and the antioxidant defence system of sweet sorghum (Sorghum bicolor) under salinity and temperature stresses. Crop Pasture Sci., 66, No. 2, pp. 145-157. https://doi. org/10.1071/CP14141
Kurepa, J., & Smalle, J. A. (2022). Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int. J. Mol. Sci., 23, No. 4, 1933. https://doi. org/10.3390/ijms23041933
Saini, S., Kaur, N. & Pati P. K. (2021). Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants. Ecotoxicol. Environ. Safety, 223, 112578. https://doi.org/10.1016/j.ecoenv.2021.112578
Hajam, A.H., Ali, M. S., Singh, S. K. & Bashri, G. (2024). Understanding cytokinin: Biosynthesis, signal transduction, growth regulation, and phytohormonal crosstalk under heavy metal stress. Environ. Exp. Bot., 228, Pt. B, 106025. https://doi.org/10.1016/j.envexpbot.2024.106025
Mok, D. W. S. & Mok, M. C. (2001). Cytokinin metabolism and action. Annu. Rev. Plant Biol., 52, pp. 89-118. https://doi.org/10.1146/annurev.arplant.52.1.89
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.