FEATURES OF PHOTOLUMINESCENCE SPECTRA OF BLACK NON-METALLIC SURFACES
DOI:
https://doi.org/10.15407/dopovidi2025.02.054Keywords:
black body, velvet, aquadag, luminescence spectrum, photon energy, photoluminescenceAbstract
The photoluminescence spectra of black samples with non-metallic surface — plastic, photographic paper and velvet — have been studied. The analysis showed that the characteristics of these spectra are influenced by the process of photoexcitation of molecules included in these materials. The photoluminescence spectra of the black velvet surface after its coating with soot and aquadag were experimentally determined. It was established that velvet coated with aquadag has the lowest photoluminescence intensity. It has also been established that exposure to sunlight significantly changes the photoluminescent characteristics of such a surface. A method for measuring the radiation properties of liquids on black surfaces using optical spectroscopy has been proposed. For the first time, in the wavelength range λ = 400÷700 nm, photoluminescence spectra of drops of liquids — water, alcohol and 40 % glucose solution — were obtained. Careful analysis of these spectra allowed us to identify the emission of OH and CH radicals and to show the influence of the type of OH bonding with the molecular basis of the liquids under study. The proposed approach to the study of photoluminescence of liquids allows direct measurements of their luminescence spectra without the use of tubes and cuvettes.
Downloads
References
Benjian, Shen, Liucun, Gao, Jin, Xing, Jing, Fang, Jie, Liang, Qiong, Ma, Yingwei, Fan & Hongxiang, Kang. (2019). Bactericidal effects research of 470 nm blue light on Pseudomonas aeruginosa: in vitro and in vivo research. Laser Phys., 29, рр. 1-7. https://doi.org/10.1088/1555-6611/aaf908
Yujia, Xu, Hongwei, Zheng, Jianxin, Sui, Hong, Linand & Limin, Cao. (2023). Rapid and Sen-sitive Fluorescence Detection of Staphylococcus aureus Based on Polyethyleneimine-Enhanced Boronate Affinity Isolation. Foods, 12, pp. 1366-1381. https://doi.org/10.3390/foods12071366
Foster, T. J., Geoghegan, J. A., Ganesh,V. K. & Hook, M. (2014). Adhesion, invasion and evasion: The many functions of the surface proteins of Staphylococcus aureus. Nat. Rev. Microbiol., 12(1), рр. 49-62. https://doi. org/10.1038/nrmicro3161
Lipcsei, L. E., Brown, L G., Coleman, E. W., Kramer, A., Masters, M., Wittry, B. C., Reed, K. & Radke, V. J. (2019). Foodborne illness outbreaks at retail establishments.-National Environmental Assessment Reporting System, 16 state and local health departments, 2014–2016. MMWR Surveill. Summ., 68, рр. 1-20.
Kalyantanda, G., Shumyak, L. & Archibald, L. K. (2015). Cronobacter species contamination of powdered infant formula and the implications for neonatal health. Front. Pediatr., 3, рр. 56-64.
Hansen, N. S., Nielsen, L. T. & Leth, S. (2019). Staphylococcus aureus toxic shock syndrome originating from a split skin transplant. Ugeskr. Laeger, 181, V08180580.
Hu, Yaohua, Wang, Chengcheng, Bai, Bing, Li, Mintong, Ronghui, Wang & Yanbin, Li. (2014). Detection of Staphylococcus Aureus using quantum dots as fluorescence labels. Int. J. Agric. & Biol. Eng., 7, No.1, рр. 77-83.
Bandurin, Yu. A., Zavilopulo, A. N., Molnar, Sh. & Shpenik, O. O. (2022). Excitation of L-valine molecules by electrons and photons. Eur. Phys. J. D, 76, No. 9. https://doi.org/10.1140/epjd/s10053-021-00331-0/
Sala, L., Rakovsky, J., Zerolov, A. & Kocisek, J. (2023). Light-Induced Damage to DNA Origami Nanostructures in the 193nm-310nm Range. J. Phys. B: Atomic, Molec. and Opt. Phys., рр. 1-12. https://doi.org/10.1088/1361- 6455/acf3bd
Bandurin, Yu. A., Popik, T. Yu. & Zavilopulo, A. N. (2022). Interaction of photons with molecules of glucose and fructose. Dopov. Nac. akad. nauk Ukr., No. 1, рр. 58-63. https://doi.org/10.15407/dopovidi2022.01.058
Bandurin, Yu. A., Zavilopulo, A. N. & Popik, Т. Yu., et al. (2023). Fluorescence Excitation Spectroscopy of Glucose Molecules. J. Phys. Optics Sci., 5, No. 1, рр. 1-7. https://doi.org/10.47363/JPSOS/2023(5)177
Visaggio, D., Pirolo, M. & Frangipani, E. et al. (2021). A Highly Sensitive Luminescent Biosensor for the Microvolumetric Detection of the Pseudomonas aeruginosa Sideroph-ore Pyochelin. ACS Sensors, 6, рр. 3273- 3283. https://doi.org/10.1021/acsensors.1c01023
Kasai, Y., Kobayashi, H. & Tsuchido, Y. et al. (2016). Staphylococcus aureus Detection by Fluorescent Silica Nanoparticles Modified with Metal-Dipicolylamine Complexes. Chem.Lett., 45, рр. 749-751 https://doi. org/10.1246/cl.160261
Bandurin, Yu. A., Shpyrko, G. M., Zavilopulo, A. N. & Bandurina, L. О. Device for studying the luminescence of liquid and solid materials. Pat. of Ukraine for cor. model No. 151585. MPK G01J 3/28 (2006.01). Publ. Bull. No. 33. dated 17.08.2022 (in Ukrainian).
Antonchenko, V. Ya. et al. (1991). Fundamentals of Water Physics. Kyiv: Nauk. Dumka (in Russian).
Abdallah, O. at al. Fluorescence spectroscopy by detection of glucose concentrations in DMEM-solutions and its perspectives for non-invasive measurement. BIODEVICES-2011. pр. 411-414. https://doi. org/10.5220/0003176504110414
The Systematic Identification of Organic Compounds (2004.) Ed. R. Shriner, C. Hermann, T. Morrill, D. Curtin, and R. Fuson. Wiley, Hoboken.
Bandurin, Y. A., Fedurtsja, Y. V., Rusin, A. V., Molnar, S. B. & Bandurin, O. Y. (2024). Photoluminescence of L-Valine Irradiated with Small Doses. Med Discoveries, 3, No. 6, рр. 1178. https://doi.org/10.52768/2993- 1142/1178
Stachová, B., Garcia Angulo, E. L., Matejčík, Š., Michalczuk, B. & Országh, J. (2025). Dissociative excitation of acetone induced by electron impact. Phys. Scr., 100, 015409. https://doi.org/10.1088/1402-4896/ad9c2b
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.