On the Dirichlet problem for generalized Cauchy-Riemann equations
DOI:
https://doi.org/10.15407/dopovidi2025.02.003Keywords:
Cauchy-Riemann system, generalized Cauchy-Riemann equations, Dirichlet problem, Beltrami and A− harmonic equationsAbstract
Here we give a survey of consequences of the theory of the Beltrami equations from the complex analysis for the Dirichlet problem to generalized Cauchy-Riemann equation ∇v = B ∇u in the real plane R2 that describe flows of fluids in anisotropic and inhomogeneous media, where Bis a 2 × 2 matrix valued coefficient and the gradients ∇u and ∇v are interpreted as vector columns. Moreover, we clarify the relationships of the latter to the A-harmonic equation div (A∇u) = 0 with matrix valued coefficients A that is one of the main equations of the potential theory, namely, of the hydromechanics (fluid mechanics) in anisotropic and inhomogeneous media in the plane. The survey includes a series of effective integral criteria for existence of regular solutions of the Dirichlet problem with continuous data in arbitrary bounded simple connected domains to generalized Cauchy-Riemann equations with matrix coefficients in the case of anisotropic and inhomogeneous media.
Downloads
References
Ahlfors, L. (1966). Lectures on Quasiconformal Mappings. New York: Van Nostrand.
Astala, K., Iwaniec, T. & Martin, G. J. (2009). Elliptic differential equations and quasiconformal mappings in the plane. Princeton Math., Ser. 48. Princeton: Princeton Univ. Press.
Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bi-Lipschitz mappings in the plane. EMS Tracts in Mathematics, 19. Zürich: European Mathematical Society.
Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics 26. Berlin: Springer.
Lehto, O. & Virtanen, K. I. (1973). Quasiconformal mappings in the plane. Die Grundlehren der mathematischen Wissenschaften 126. Berlin-Heidelberg-New York: Springer.
Martio, O., Ryazanov, V., Srebro, U. & Yakubov, E. (2009). Moduli in modern mapping theory. Springer Monographs in Mathematics. New York: Springer.
Gutlyanskii, V., Martio, O., Sugawa, T. & Vuorinen, M. (2005). On the degenerate Beltrami equation. Trans. Amer. Math. Soc., 357(3), pp. 875-900.
Gutlyanskii, V., Nesmelova, O., Ryazanov, V. & Yakubov, E. (2024). BMO and Dirichlet problem for semi-linear equations in the plane. Topological Methods in Nonlinear Analysis, 64(1), pp. 163-199. https://doi.org/10.12775/ TMNA.2023.052.
Gutlyanskii, V., Ryazanov, V., Sevost’yanov, E. & Yakubov, E. (2022). BMO and Dirichlet problem for degenerate Beltrami equation. J. Math. Sci. (New York), 268(2), pp. 157-177. (Translation from Ukr. Mat. Visn., 19(3), pp. 327-354).
John, F. & Nirenberg, L. (1961). On functions of bounded mean oscillation. Comm. Pure Appl. Math., 14, pp. 415-426.
Heinonen, J., Kilpeläinen, T. & Martio, O. (1993). Nonlinear A-harmonic theory of degenerate elliptic equa- tions. Oxford Mathematical Monographs. Oxford Science Publications, The Clarendon Press. New York: Ox- ford Univ. Press.
Reimann, H. M. & Rychener, T. (1975). Funktionen Beschränkter Mittlerer Oscillation. Lecture Notes in Math.
Sarason, D. (1975). Functions of vanishing mean oscillation. Trans. Amer. Math. Soc., 207, pp. 391-405.
Brezis, H. & Nirenberg, L. (1995). Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.), 1(2), pp. 197-263.
Ignat’ev, A. A. & Ryazanov, V. I. (2005). Finite mean oscillation in the mapping theory. Ukrainian Math. Bull., 2(3), pp. 403-424.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.