Magnetic isotope of magnesium 25Mg accelerates the reaction of ATP hydrolysis catalyzed by myosin
DOI:
https://doi.org/10.15407/dopovidi2014.01.160Keywords:
ATP hydrolysis, magnetic isotope of magnesium, myosinAbstract
Among three stable magnesium isotopes 24Mg, 25Mg, and 26Mg with natural abundance 79, 10, and 11%, only 25Mg has the nuclear spin (I = 5/2) and, therefore, the nuclear magnetic moment. Two other isotopes, 24Mg and 26Mg, are spinless (I = 0) and, hence, have no magnetic moment. In this work, we have revealed that magnetic isotope 25Mg, by comparison to nonmagnetic isotopes 24Mg and 26Mg, essentially stimulates, by 2–2.5 times, the enzyme ATP hydrolysis reaction catalyzed by myosin isolated from smooth muscles of uterus. The catalytic effect of the nuclear spin of 25Mg has been observed at the usual physiological concentrations of MgCl2, at 5 mM. Thus, we have, for the first time, documented the magnetic isotope effect in the enzyme hydrolysis of ATP by myosin.
Downloads
References
Grant D. M., Harris R. K. (Eds.) Encyclopedia of nuclear magnetic resonance. Chichester: Wiley, 1996, Vol. 8: 6490.
Grodzinsky D. M., Evstyukhina, Koltover V. K. et al. Dopov. Nac. akad. nauk Ukr., 2011, No. 12: 153–157 (in Russian).
Koltover V. K., Korolev V. G., Kutlakhmedov Y. A. Antioxidant prophylaxis of radiation stress. In: Belotserkovsky E., Ostaltsov Z. (Eds.). Ionizing Radiation: Applications, Sources and Biological Effects. New York: Nova Science Publishers, Inc., 2012: 117–128. https://doi.org/10.1016/j.freeradbiomed.2012.10.262
Koltover V. K., Shevchenko U. G., Avdeeva L. V. et al. Dokl. AN USSR, 2012, 442, No. 2: 272–274.
Koltover V. K. Biofizika, 2013, 58, No. 2: 257–263 (in Russian).
Romani A. M. P. Arch. Biochem. Biophys., 2011, 512, No. 1: 1–23. https://doi.org/10.1016/j.abb.2011.05.010
Strayer L. Biochemistry. In 3 vols. Vol. 3. Moscow: Mir, 1985 (in Russian).
Weeds A. G., Taylor R. S. Nature, 1975, 257, No. 1: 54–56. https://doi.org/10.1038/257054a0
Labintseva R. D., Bevza A. A., Bevza O. V., Cherenok S. O., Kalchenko V. I., Kosterin S. O. Ukr. biokhim. zhurn., 2012, 84, No. 1: 34–44 (in Ukrainian).
Iwane A. H., Kitamura K., Tokunaga M. et al. Biochem. Biophys. Res. Commun., 1997, 230, No. 1: 46–80. https://doi.org/10.1006/bbrc.1996.5861
Burgess S. A., Yu S., Walker M. L. et al. J. Mol. Biol., 2007, 372, No. 5: 1165–1178. https://doi.org/10.1016/j.jmb.2007.07.014
Chen P. S., Toribara Jr. T. Y., Warner H. Analyt. Chem., 1956, 28, No. 11: 1756–1758. https://doi.org/10.1021/ac60119a033
Zeldovich Ya. B., Buchachenko A. L., Frankevich E. L. Uspekhi fiz. nauk, 1988, 155, No. 1: 3–45 (in Russian).
Koltover V. K. Biomedicine, Rijeka: InTechEurope, 2012: 105–122. Retrieved from http://www.intechopen.com/books/biomedicine.
Volkenshtein M. V. General Biophysics. Moscow: Nauka, 1978 (in Russian).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.