On symmetries of a quantum plane and its Laurent extension

Authors

  • S.D. Sinel’shchikov

DOI:

https://doi.org/10.15407/dopovidi2014.11.022

Keywords:

Laurent polynomial algebra, quantum plane

Abstract

The structures of the Uq(sl2)-module algebra on the Laurent polynomial algebra over a quantum plane are considered. We establish a natural one-to-one correspondence between such structures and similar structures on the subalgebra of regular polynomials. A complete list of the above structures corresponding to the non-identity matrices from SL(2,Z) is presented.

Downloads

References

Kassel C. Quantum groups, New York: Springer, 1995. https://doi.org/10.1007/978-1-4612-0783-2

Duplij S., Sinel’shchikov S. J. Math. Phys., Anal., and Geom., 2010, 6, No 4: 406–430.

Duplij S., Hong Y., Li F. J. Lie Theory, 2015, 25, No 2: 327–361 (in press).

Abe E. Hopf algebras, Cambridge: Cambridge Univ. Press, 1980.

Sweedler M. E. Hopf algebras, New York: Benjamin, 1969.

Kirkman E., Procesi C., Small L. Commun. Algebra, 1994, 22, Iss. 10: 3755–3774. https://doi.org/10.1080/00927879408825052

Alev J., Dumas F. Nagoya Math. J., 1996, 143: 119–146. https://doi.org/10.1017/S002776300000595X

Park H. G., Lee J., Choi S. H. et al. Sci. China Series A: Math., 2009, 52, No 2: 323–328. https://doi.org/10.1007/s11425-009-0007-9

Published

11.03.2025

How to Cite

Sinel’shchikov, S. (2025). On symmetries of a quantum plane and its Laurent extension . Reports of the National Academy of Sciences of Ukraine, (11), 22–25. https://doi.org/10.15407/dopovidi2014.11.022