About the isoperimetric property of λ-convex lunes on the Lobachevsky plane
DOI:
https://doi.org/10.15407/dopovidi2014.11.011Keywords:
Lobachevsky plane, λ-convex curveAbstract
We give a sharp lower bound of the area of a domain that can be enclosed by a closed embedded λ-convex curve of a given length on the Lobachevsky plane.
Downloads
References
Burago Yu. D., Zalgaller V. A. Geometric inequalities, Leningrad: Nauka, 1980 (in Russian).
Borisenko A. A., Drach K. D. Matem. zametki, 2014, 95, Iss. 5: 656–665 (in Russian).
Borisenko A. A., Drach K. D. J. Dynam. and Control Syst., 2015, 21, Iss. 3: 311-327. https://doi.org/10.1007/s10883-014-9221-z
Borisenko A. A., Drach K. D. Mat. sb., 2013, 204, No 11: 21–40 (in Russian).
Howard R., Treibergs A. Rocky Mountain J. Math., 1995, 25, No 2: 635–684. https://doi.org/10.1216/rmjm/1181072242
Milka A. D. Ukr. geok. sb. 1978, 21: 88–91 (in Russian).
Milyutin A. A., Dmitruk A. V., Osmolovsky N. P. The maximum principle in optimal control, Moscow: Izd-vo TSPI pri mekh.-mat. fakultete MGU, 2004 (in Russian).
Fillmore J. P. Proc. Amer. Math. Soc., 1970, 24: 705–709.
Bliashke V. Circle and ball, Moscow: Nauka, 1967 (in Russian).
Kelley H. J., Kopp R. E., Moyer H. G. Singular extremals. In: Topics in Optimization / Ed. G. Leitmann, New York: Academ. Press, 1967: 63–103. https://doi.org/10.1016/s0076-5392(09)60039-4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.