On comparable and non-comparable Hausdorff measures
DOI:
https://doi.org/10.15407/dopovidi2014.08.035Keywords:
Hausdorff measures, theory of fractals, trivialityAbstract
General methods of calculation of the Hausdorff–Besicovitch dimension are developed, and the triviality (non-triviality) of net Hausdorff measures is studied. Sufficient conditions for a fine covering family to generate comparable net Hausdorff measures Hα (·, Φ) are given. General sufficient conditions for a fine covering family to be faithful are also found. The faithfulness for the family of coverings generated by the factorial expansion for real numbers is proved. It is shown that the family of faithful coverings is essentially wider than the family of coverings generating the comparable net Hausdorff measures.
Downloads
References
Beresnevich V., Velani S. Ann. of Math., 2006, 164: 971–992. https://doi.org/10.4007/annals.2006.164.971
Zhou Z., Feng L. Nonlinearity, 2004, 17, No 2: 493–502. https://doi.org/10.1088/0951-7715/17/2/007
Baranski K. Adv. Math., 2007, 210: 215–245. https://doi.org/10.1016/j.aim.2006.06.005
Rogers C. Hausdorff measures, London: Cambridge Univ. Press, 1970.
Besicovitch A. Indag. Math., 1952, 14: 339–344. https://doi.org/10.1016/S1385-7258(52)50045-3
Billingsley P. Ill. J. Math., 1961, 5: 291–198.
Turbin A. F., Pratsevityy N. V. Fractal sets, functions, distributions, Kyiv: Nauk. dumka, 1992 (in Russian).
Albeverio S., Torbin G. Bull. Sci. Math., 2005, 129, No 4: 356–367. https://doi.org/10.1016/j.bulsci.2004.12.001
Cutler C. Internat. J. Math. and Math. Sci., 1988, 2, No 4: 643–650. https://doi.org/10.1155/S016117128800078X
Pratsiovytyi M. V., Torbin G. M. Nauk. zap. NPU im. M. P. Dragomanova. Fiz.-mat. nauky, 2003, 4, No 1: 207–215 (in Ukrainian).
Albeverio S., Koshmanenko V., Pratsiovytyi M., Torbin G. Methods of Functional Analysis and Topology, 2011, 17, No 2: 97–111.
Bernardi M., Bondioli C. J. Anal. and its Appl., 1999, 18, No 3: 733–751.
Erdos P., Renyi A. Acta Math. Acad. Sci. Hungar, 1959, 10: 207–215.
Albeverio S., Pratsiovytyi M., Torbin G. Ergodic Theory and Dynamical Systems, 2004, 24, No 1: 1–16. https://doi.org/10.1017/S0143385703000397
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.