Quantum-chemical analysis of all possible m1Thy · m9Ade pairs of DNA bases
DOI:
https://doi.org/10.15407/dopovidi2014.07.158Keywords:
m1Thy · m9Ade pairs of DNA bases, quantum-chemical analysisAbstract
The complete family of hydrogen-bound base pairs of DNA m1Thy · m9Ade methylated by glycosidic linkages is obtained by quantum-chemical methods on MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) levels of theory for the first time. The total number is 32 different structures. It is first found that the Hoogsten pair corresponds to the global minimum of the Gibbs free energy, near which three couples (reverse Hoogsten, Watson–Crick, and reverse Watson–Crick ones) in the energy interval 0–1.20 kcal/mol are located. Their combined occupancy under normal conditions is 99.9%.
Downloads
References
Brovarets O. O. Ukr. biokhim. zhurn., 2013, 85, No. 4: 104–110 (in Ukrainian).
Brovarets O. O., Hovorun D. M. Ukr. bioorgan. acta., 2010, No. 1: 11–17 (in Ukrainian).
Sukhodub L. F. Chem. Rev., 1987, 87, No. 3: 589–606. https://doi.org/10.1021/cr00079a006
Brovarets O. O., Hovorun D. M. J. Biomol. Struct. Dyn., to appear. doi: https://doi.org/10.1080/07391102.2013.852133.
Nedderman A. N. R., Stone M. J., Williams D. H. et al. J. Mol. Biol., 1993, 230, No. 3: 1068–1076. https://doi.org/10.1006/jmbi.1993.1219
Petrushka J., Sowers L. C., Goodman M. F. J. Mol. Biol., 1986, 83: 1559–1562.
Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
Bader R. W. F. Atoms in molecules. A quantum theory. Oxford: Calendon Press, 1990.
Sokolov N. D., Chulanovskyi V. M. (Eds.). Hydrogen Communications. Moscow: Nauka, 1964 (in Russian).
Keith T. A. AIMAll (Version 10.05.04), 2010 Retrieved from http://aim.tkgristmill.com.
Grunenberg J., Barone G. Royal Society of Chem., 2013, No. 3: 4757–4762.
Weinhold F., Landis C. R. Chem. Educ. Res. Pract. Eur., 2001, No. 2: 91–104.
Iogansen A. V. Spectrochim. Acta. Part A., 1999, 55: 1585–1612. https://doi.org/10.1016/S1386-1425(98)00348-5
Espinosa E., Alkorta I., Rozas I., Elguero J., Molins E. Chem. Phys. Lett., 2001, 336, No. 5–6: 457–461. https://doi.org/10.1016/S0009-2614(01)00178-6
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.