Influence of nitrogen and oxygen heteroatoms on catalytic activity of carbon nanoporous materials of KAU and SCN types in the model reaction of benzoyl peroxide decomposition
DOI:
https://doi.org/10.15407/dopovidi2015.11.075Keywords:
benzoyl peroxide, carbon nanomaterials, catalytic activity, heteroatom, Michaelis constant, nitrogen-containing carbon, non-aqueous mediaAbstract
The catalytic activity of carbon nanoporous materials of SCN and KAU type, their oxidized and nitrogen-containing modified forms, enzyme catalase in the model reaction of benzoyl peroxide decomposition in ethyl acetate solutions are determined by the calculation of the Michaelis constants according to the kinetics of substrate decomposition. It is found that the catalytic activity of studied samples correlates with surface basicity and the presence of quaternary nitrogen groups in the structure. The doping by nitrogen and oxygen heteroatoms increases and decreases, respectively, their catalytic activity.
Downloads
References
Glevatska K. V., Bakalinska O. M., Kartel M.T. Dopov. Nac. akad. nauk Ukr., 2008, No 8: 126–131 (in Ukrainian).
Krieger N., Bhatnagar T., Baratti J. C., Baron A. M., de Lima V. M., Mitchell D. Food Technol. Biotechnol, 2004, 42, No 4: 279–286.
Menendez-Diaz J. A., Martln-Gullon I. Activated carbon surfaces in environmental remediation (Interface science and technology series, 7), Ed. by T. Bandosz, Amsterdam: Elsevier, 2006: 1–47. https://doi.org/10.1016/S1573-4285(06)80010-4
Okotrub A. V., Bulusheva L. G., Kudashov A. G., Belavin V. V., Vyalikh D. V., Molodtsov S. L. Appl. Phys. A: Mater., 2009, 94, No 3: 437–443. https://doi.org/10.1007/s00339-008-4914-3
Badzian A., Badzian T., Breval E., Piotrowski A. Thin Solid Films, 2001, 398: 170–174. https://doi.org/10.1016/S0040-6090(01)01461-4
Shao Y., Sui J., Yina G., Gao Y. Appl. Catal., 2008, 79: P. 89–99. https://doi.org/10.1016/j.apcatb.2007.09.047
Shao Y. Y., Wang X. Q., Engelhard M., Wang C.M., Dai S., Liu J., Yang Z.G., Lin Y.H. J. Power Sources, 2010, 195, No 13: 4375–4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
Cui T. X., Lv R. T., Huang Z. H., Zhu H. W., Zhang J., Li Z., Yi J., Feiyu K., Kunlin W. Carbon, 2011, 49, No 15: 5022–5028. https://doi.org/10.1016/j.carbon.2011.07.019
Chettya R., Kundua S., Xiaa W., Brona M., Schuhmannb W., Chirilad V., Blandl W., Reinecke T., Muhler M. Electrochim. Acta, 2009, 54: 4208–4215. https://doi.org/10.1016/j.electacta.2009.02.073
Chen P., Xiao T. Y., Li H. H., Yang J. J., Wang Z., Yao H. B., Yu S. H. ACS Nano, 2012, 6, No 1: 712–719. https://doi.org/10.1021/nn204191x
Podyacheva O.Yu., Izmagilov Z. R. Catal. Today, 2015, 249: 12–22. https://doi.org/10.1016/j.cattod.2014.10.033
Glevatska K. V., Bakalinska O. M., Kartel M.T. Scientific notes NaUKMA, Chem. Sci. and Technol., 2008, 79: 19–23 (in Ukrainian).
Strelko V. V., Nemoshkalenko V. V., Kartel N. T., Medvedev S. L. Adsorpt. and Adsorb., 1983, 11: 76–80 (in Russian).
Bortnik N. V., Galyarnik D. M., Kulyk T. V., Palyanytsya B. B., Bakalinska O. M., Kartel M. T. 34th Intern. Conf. on Vacuum Microbalance and Thermoanalytical Techniques (ICVMTT 34) and Intern. Conf. "Modern Problems of Surface Chemistry", Kyiv, 2014: 29.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.