Optimal control over axisymmetric vibrations of a circular membrane

Authors

  • M. M. Kopets

DOI:

https://doi.org/10.15407/dopovidi2015.09.033

Keywords:

axisymmetric vibrations of a circular membrane, method of Lagrange multipliers, necessary conditions of optimality, optimal control problem, quadratic functional, system of Riccati equations

Abstract

The article discusses the linear-quadratic problem of optimal control over axisymmetric vibrations of a circular membrane. The statement of the aforementioned task in polar coordinates is suggested. Using the method of Lagrange multipliers, necessary optimality conditions are obtained. The uniqueness of optimal control is proved. A system of integro-differential Riccati equations and additional conditions for it are obtained. The solution of this system makes it possible to write down the formula for calculating the optimal control.

Downloads

References

Kopets M. M. Problems of control and infomatik, 2014, No 1: 12–22 (in Russian).

Kopets M. M. Problems of control and infomatik, 2015, No 1: 40–51.

Chikrii A. A., Eidel'man S. D. Cybernetics and Systems Analysis, 2012, No 6: 66–99 .

Eidel'man S. D., Chikrii A. A. Ukr. mat. zhurn, 2000, 52, No 11: 1566–1583.

Chikrii A. A., Rappoport J. S., Chikrii K. A. Cybernetics and Systems Analysis, 2007, 43, No 5: 719–730. https://doi.org/10.1007/s10559-007-0097-8

Chikrii A. A., Dzyubenko K. J. J. of Information Sci, 2001, 33, No 5: 62–74.

Pilipenko Yu. V., Chikrii A. A. Prikl. Matematika i Mechanika, 1993, 57, No 3: 3–14.

Published

06.02.2025

How to Cite

Kopets, M. M. (2025). Optimal control over axisymmetric vibrations of a circular membrane . Reports of the National Academy of Sciences of Ukraine, (9), 33–38. https://doi.org/10.15407/dopovidi2015.09.033

Issue

Section

Information Science and Cybernetics