Controllability problems for the wave equation on a half-plane and modified Sobolev spaces
DOI:
https://doi.org/10.15407/dopovidi2015.09.018Keywords:
controllability problem, Dirichlet boundary control, half-plane, modified Sobolev spaces, wave equationAbstract
The 2-d wave equation wtt=Δw, t∈(0,T), on the half-plane x1>0 controlled by the Dirichlet boundary condition w(0,x2,t)=δ(x2)u(t) is considered in Sobolev spaces, where T>0 is a constant and u∈L∞(0,T) is a control. This control system is transformed to a control system for the 1-d wave equation in modified Sobolev spaces. These spaces play an important role in the study. Necessary and sufficient conditions of (approximate) L∞-controllability are obtained for the 1-d control problem. It is also proved that the 2-d control system replicates the controllability properties of the 1-d control system and vice versa. Finally, necessary and sufficient conditions of (approximate) L∞-controllability are obtained for the original 2-d control problem.
Downloads
References
Belishev M. I., Vakulenko A.F. J. Math. Sci, 2007, 142, Iss. 6: 2528–2539. https://doi.org/10.1007/s10958-007-0140-3
Castro C. ESAIM: Control, Optim. Calc. Var, 2013, 19: 301–316. https://doi.org/10.1051/cocv/2012009
Fardigola L. V. J. Math. Phys., Anal., Geom, 2005, 1: 93–115.
Fardigola L. V. ESAIM: Control, Optim. Calc. Var, 2012, 18: 748–773. https://doi.org/10.1051/cocv/2011169
Fardigola L. V. SIAM J. Control Optim, 2013, 51: 1781–1801. https://doi.org/10.1137/110858318
Fardigola L. V. Math. Control and Related Fields, 2013, 3: 161–183. https://doi.org/10.3934/mcrf.2013.3.161
Fardigola L. V. Math. Control and Related Fields, 2015, 5: 31–53. https://doi.org/10.3934/mcrf.2015.5.31
Fardigola L. V. J. Math. Phys., Anal., Geom, 2015, 11: 18–44.
Gugat M., Sokolowski J. Appl. Anal., 2012, 92: 2200–2214. https://doi.org/10.1080/00036811.2012.724404
Lui Y. Acta Appl. Math, 2013, 128: 181–191. https://doi.org/10.1007/s10440-013-9825-4
Sklyar G. M., Fardigola L. V. J. Math. Anal. Appl, 2002, 276: 109–134. https://doi.org/10.1016/S0022-247X(02)00380-3
Privat Y., Trélat E., Zuazua E. Ann. Inst. Poincaré (C). Non Linéair Analysis, 2013, 30: 1097–1126.
Seck Ch., Bayili G., Séne A., Niane M. T. Afr. Mat., 2012, 23: 1–9. https://doi.org/10.1007/s13370-011-0001-6
Gindikin S. G., Volevich L. R. Distributions and Convolution Equations, Philadelphia: Gordon and Breach, 1992.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Reports of the National Academy of Sciences of Ukraine

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.